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Cost and speed considerations often conduct to measure/classify items according to 

two comprehensive and exclusive classes/categories (binary scale). Assume items are 

submitted for sorting according to binary scale (e.g. Type 1 and Type 2) using some 

sorting machine (SM). Repeatability or consistency testing of the SM is examined by 

the help of the correlation coefficient between the random variables denoting the 

number of items that were classified to the first category (for example) in two 

sequential sorting procedures. Paradoxical results lead to the conclusion that this 

measure is not suitable for measuring repeatability and further research is needed in 

order to find methods for checking consistency.  
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1. Introduction 

 

Stevens (1946) proposed conventional way to measure objects according to four 

measurement scales. The first two scales are called categorical (nominal and ordinal 

scales) while the two others are called numerical (interval and ratio scales). Both in 

nominal and ordinal scales, the objects are coded with labels/ names that are 

corresponding to exhaustive and disjoint categories. While in nominal scale there is no 

ordering between the categories, in ordinal scale the situation is different and the 

codes that are given to the different categories are imposing some ordering of the 

objects. So, the only legitimate operations between nominal objects are comparison 

(equal, unequal) of their codes while between ordinal objects in addition (to equal and 

unequal) we can compare in form of greater than or smaller than.  

This paper deals with classification of items according to binary scale, such as: Type 

1/Type 2, defective/non-defective, etc., which can consider as a nominal case but also 

as an ordinal case. The usage of binary scale is usually the method of choice when 

rapid results are needed. Here we assume that items are classified by a sorting 

machine (SM). The repeatability of the SM is examined by two sequential sorting 

processes. Assume that the distribution of n items according to two binary scale types 

(Type 1/Type 2) is known. These items are submitted for SM examination and only 

the items that have been classified as Type 1 are re-examined by the same SM 

(Gertsbakh (1962), Gertsbakh and Friedman (1985)). The repeatability of the SM is 

examined through a fit (e.g. correlation coefficient) between the results of these two 

sorting processes (e.g., the amount of items that were classified as Type 1 after the 
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first and second sorting). As will be shown in Section 3, the results are unexpected and 

somewhat quite paradoxical. 

 

2. Preliminaries assumptions 

 

When dealing with binary scale, the SM’s performance can be described by the 

following square stochastic classification matrix P̂ (Bashkansky et al., 2007),  

1 1
ˆ

2 1
P

  
  

  
, 

where   is a Type I error rate (false positive or false alarm) and   is a Type II 

error rate (false negative). Assume n items are given: 1n  items of Type 1 and 2n  

items of Type 2, so a total of  1 2n n n   items are submitted to the SM for 

classification into two types: Type 1 and Type 2. We emphasize that the classification 

of the n items is known a-priori.  

 

3. Results 

  

Due to the SM classification errors, we can find two kinds of items that will be 

classified as Type 1: (a) an item that is actually Type 1 and was classified as Type 1; 

and (b) an item that is actually Type 2 but was classified as Type 1 due to the SM’s 

classification error.  

Define the following two random variables. Let 1X  be the total number of items that 

were classified as Type 1 after the first classification. Let 1Z be the number of items 

among 1X  that were classified as Type 1 in the first classification and that are also 

actually Type 1. Obviously, 1 1Z X . One can see, from Fig. 1, that the random 

variable 1X  is composed from a sum of two random variables.  

 

 

Fig.1. The first sorting and classification errors 

 

 

 

 

Type 1 

 

Type 2 
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Only the 1X  items are sorted again using the same SM and the same binary scale. 

Let 1Y  be the number of items classified as Type 1 after the second classification. 

Clearly, 1 1Y X . As above, 1Y  is a sum of two random variables (see Fig. 2): 1W  

denotes the number of items that are actually Type 1 and classified as Type 1 during 

the second sorting and  1 1Y W  is the number of items that are actually Type 2, but 

were classified as Type 1 in the second sorting. 

 

 

 

 

 

Fig.2. Two sequential sorting processes 

 

3.1 Two sequential sorting processes in the case when only one item type is 

submitted to the SM 

Let's us begin with a private case. Assume that all the n  items that are submitted for 

SM examination are of Type 1 only (i.e., 2 0n  , 1n n ). The random variable

1 1( )X Z , that denotes the number of items that were classified as Type 1 (success), 

i.e., reflecting the number of successes in n independent Bernoulli trials. Now, the 

1X  items are sorted again using the same SM and the same binary scale. Let 

1 1( )Y W  be the number of items classified as Type 1 after the second classification. 

Clearly, 1 1Y X . Some calculations lead to the following results:   

   1 1 1~ ,1 ; ~ ,1X Bin n Y X k Bin k   ,                             

       1 11 ; 1E X n VAR X n     ,    

          2 2 2

1 11 ; 1 1 1E Y n VAR Y n      ,      

   
2

1 1

1
, 1 ;

2
COV X Y n


    


.     

Fig. 3 presents the values of  as a function of  . The naïve hypothesis is that as 
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0 , the value of 1 , but as seen from Fig. 3, its maximal value is only

1
0.707

2
 . 

 

Fig. 3. The correlation coefficient as a function of a Type I error ( 2 0n  ). 

 

Return now to the general case. Assume we are given n items such that 1n  items of 

Type 1 and 2n  items of Type 2, a total of  1 2n n n   items are submitted to the 

SM for classification into two types: Type 1 and Type 2 

3.2 First application of the sorting machine 

As follows from Fig. 1, 1X  is distributed according to the convolution of the two 

random variables,  1 1~ ,1Z Bin n  and    1 1 1 2 1~ , 0X Z Z k Bin n k n     . 

leads to the following results: 

   1 1 21E X n n    ,                  

     1 1 21 1VAR X n n     .           

Now, in order to evaluate the consistency of the SM, only the items that were 

classified as Type 1 after the first classification undergo a second classification by the 

same SM. In the following section we deal with the issue of evaluating the 

repeatability of this SM. 

 

3.3 Determining the repeatability of the sorting machine 

In the second sorting, only the 1X  items are sorted again using the same SM and the 

same binary scale. The naïve attitude is to assume that precise classification is 
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expressed by high correlation between 1X  and 1Y , however calculations show the 

following results. 

The joint probability distribution function of 1X  and 1Y  is given by: 

 

 

 

 

 
   
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nn
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x kk
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y hh
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  
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  

  
        

  

 
        

The expectation and variance of the random variable 1Y  are given by: 

   
22

1 2 1 1E Y n n    ,                             

        2 22 2
1 2 11 1 1 1VAR Y n n       .     

The correlation coefficient between 1X and 1Y  is given by: 

 

 
   

          

2 2
1 2

1 1
2 22 2

1 2 2 1

1 1
,

1 1 1 1 1 1

n n
X Y

n n n n

    
 

          

 .  

 

The correlation coefficient never exceeds 
1

0.707
2
 . In the following two cases: 

0, 1    , the correlation coefficient tends to 0.5. In the case of 

0, 0    (or 1, 1    ), however, the correlation coefficient is actually 

undefined because its value depends on the direction in which we are approaching this 

particular point. It is clearly from Table 1, where the correlation coefficient is 

calculated for some tiny values of α and β. If 0  and 0 , then  1 1,X Y

tends to zero, but if 0  and 0 , then  1 1,X Y  tends to 
1

2
, and finally, 

if 0  (by the diagonal of  Table 1), then  1 1,X Y  tends to 0.5. So the 

point α=0, β=0 is the correlation coefficient’s point of discontinuity. 
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Table 1. The correlation coefficient for some tiny values of α and β 

β   
0 0.0001 0.0002 0.0003 0.0004 0.0005 

α   

0 undefined 0.01 0.0141 0.0173 0.02 0.0224 

0.0001 0.707089 0.5 0.4084 0.3538 0.3166 0.2893 

0.0002 0.707071 0.5773 0.5 0.4474 0.4085 0.3783 

0.0003 0.707054 0.6123 0.5477 0.5001 0.4631 0.4333 

0.0004 0.707036 0.6324 0.5773 0.5345 0.5001 0.4716 

0.0005 0.707018 0.6454 0.5975 0.5590 0.5271 0.5001 

 

 

4. Conclusions 

 

The paper examines the problem of evaluating repeatability tests of a given SM. For 

simplicity, we assume that each item that is submitted for examination by the SM is 

classified according to binary scale. The usual way to check SM accuracy is to 

conduct sequential sorting processes. For simplicity—again—we used only two 

sequential processes. As shown in the paper, even for small classification errors, the 

correlation coefficient between the results of two sequential sorting is much less than 

1. These paradoxical results lead to the conclusion that the correlation coefficient is 

not suitable for evaluating repeatability. Moreover, even for tiny error rates, predicting 

the results of a second sorting based on those of the first sorting’s results is inaccurate. 

Further research is needed in order to generalize these results to more than two 

categories and more than two sequential sorting processes. Other methods of checking 

repeatability must be considered for cases when the sorting is based on an ordinal or 

nominal scale. 
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