
BOOTSTRAP CONFIDENCE INTERVAL
FOR

MODIFIED LINEAR REGRESSION ESTIMATION
OF THE POPULATION MEAN

Sri Haryatmi Kartiko
Math Dept, Gadjahmada University, Yogyakarta, Indonesia

Abstract

Ratio estimator is used to estimate the population mean, but it has biased property. Linear
regression estimator is proposed to solve this bias problem. Several modified version of this
estimator that were proposed, some has smaller variance.

Performance of the estimator can always be improve using using values of the population
parameter of the auxiliary variable under study which are positively correlated with the study
variable.A class of modified linear regression estimators for the population mean of the form

ˆ̄YSK = α
Sy

Cy
+ (1− α)(ȳ − byx

ρ
(x̄− X̄))

where byx = syx

s2
x

, is proposed by Subramani and Kumarapandiyan(2012). This form of estima-
tor gives smaller value of variance and therefore perform better. Bootstrap confidence interval
as well as its coverage probability for population mean using this estimator is constructed in
this paper.

Key words : sample random sampling, auxiliary variable, linear regression estimator, mean
squared error, bootstrap confidence interval

I. Introduction

The linear regression estimate is designed to increase precision by the use of an auxiliary

variate xi that is correlated with yi. When the relation between yi and xi is examined, it may

be found that although the relation is approximately linear, the line does not go through the

origin. This suggests an estimate based on the linear regression of yi on xi rather than on the

ratio of the two variables.

Suppose that yi and xi are obtained for every unit in the sample and that population mean

X̄ of the xi is known. The linear regression estimate of Ȳ , the population mean of the yi is

ȳlr = ȳ + b(X̄ − x̄) (1.1)
1
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where the subscript lr denotes linear regression and b is an estimate of the change in y when

x is increased by unity. The rationale of this estimate is that if x̄ is below average we should

expect ȳ also to be below average by an amount b(X̄ − x̄) because of the regression of yi on xi.

For an estimate of the population total Y , we take Ŷlr = NȲlr.

The regression estimate

ȳ + b(X̄ − x̄) (1.2)

adjusts the sample mean of the actual measurements by the regression of the actual measure-

ments on the rapid estimates. The rapid estimates need not be free from bias. If xi−yi = D, so

that the rapid estimate is perfect except for a constant bias D, then with b = 1 the regression

estimate becomes

ȳ + (X̄ − x̄) = X̄ + (ȳ − x̄) (1.3)

If no linear regression model is assumed, our knowledge of the properties of the regression

estimate is of the same scope as our knowledge for the ratio estimate. The regression estimate

is consistent, in the trivial sense that when the sample comprises the whole population, x̄ = X̄,

and the regression estimate reduces to Ȳ . The estimate is in general biased, but the ratio of the

bias to the standard error becomes small when the sample is large. We possess a large-sample

formula for the variance of the estimate, but more information is needed about the distribution

of the estimate in small samples and about the value of n required for the practical use of

large-sample results.

By a suitable choice of b, the regression estimate includes as particular cases both the mean

per unit and the ratio estimate. Obviously if b is taken as zero, ȳlr reduces to ȳ. If b = ȳ/x̄,

ȳlr = ȳ +
ȳ

x̄
(X̄ − x̄) =

ȳ

x̄
X̄ = ˆ̄YR (1.4)

Estimation of the population mean using linear regression estimator, its variance and its vari-

ance estimator for preassign value of b as well as its estimated value from the sample are written

clearly in Cochran(1997). Kadilar and Cingi (2006) make some improvement in estimating the

population mean by using the corelation coefficient. Some improvement of product method of
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estimation in sample surveys is discussed by Singh (2003), while an improvement of estimator of

population mean using power transformation is proposed by Singh et all (2004). Improvement

of ratio type estimator using jacknife methods of estimation is done by Banerjie and Tiwari

(2011), while specifically a class of modified linear regression estimators for estimation of finite

population mean is done by Subramani and Kumarapandyan (2012).

II. Linear Regression Estimate With Preassign b

In most applications, b is estimated from the results of the sample and sometimes it is

reasonable to choose the value of b in advance. In repeated surveys, the sample values of b

remain fairly constant; or, if x is the value of y at a recent census, general knowledge of the

population may suggest that b is not far from unity, so that b = 1 is chosen. Since the sampling

theory of regression estimates when b is preassigned is both simple and informative, this case

is considered first.

Theorem 2.1. In simple random sampling, in which b0 is preassigned constant, the linear

regression estimate

ȳlr = ȳ + b0(X̄ − x̄) (2.5)

is unbiased, with variance

V (ȳlr) =
1− f

n

∑N
i=1[(yi − Ȳ )− b0(xi − X̄)]2

N − 1
(2.6)

=
1− f

n
(S2

y − 2b0Syx + b2
0S

2
x) (2.7)

Note that no assumption is required about the relation between y and x in the finite population.

Corollary 2.2. An unbiased sample estimate of V (ȳlr) is

v(ȳlr) =
1− f

n

∑n
i=1[(yi − ȳ)− b0(xi − x̄)]2

n− 1
(2.8)

=
1− f

n
(s2

y − 2b0syx + b2
0s

2
x) (2.9)

Theorem 2.3. The value of b0 that minimizes V (ȳlr) is

b0 = B =
Syx

S2
x

(2.10)
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=
∑N

i=1(yi − Ȳ )(xi − X̄)∑N
i=1(xi − X̄)2

(2.11)

which may be called the linear regression coefficient of y on x in the finite population. Note

that B does not depend on the properties of any sample that is drawn, and therefore could

theoretically be preassigned. The resulting minimum variance is

Vmin(ȳlr) =
1− f

n
S2

y(1− ρ2) (2.12)

where ρ is the population correlation coefficient between y and x.

The same analysis may be used to show how far b0 can depart from B without incurring a

substantial loss of precision.

V (ȳlr) =
1− f

n

(
S2

y(1− ρ2) + (b0 −B)2S2
x

)
(2.13)

= Vmin(ȳlr)
(

1 +
(b0 −B)2S2

x

S2
y(1− ρ2)

)
(2.14)

Since BSx = ρSy, this may be written

V (ȳlr) = Vmin(ȳlr) + [1 + (
b0

B
− 1)2

(
ρ2

(1− ρ)2

)
] (2.15)

Thus, if the proportional increase in variance is to be less than α, we must have

|b0

B
− 1| <

√
α(1− ρ2)/ρ2 (2.16)

To ensure a small proportional increase in variance b0/B must be close to 1 if ρ is very high

but can depart substantially from 1 if ρ is only moderate.

III. Linear Regression Estimate With b From The Sample

Theorem 2.3 suggests that if b must be computed from the sample an effective estimate is

likely to be the familiar least squares estimate of B, that is,

b =
∑n

i=1(yi − ȳ)(xi − x̄)∑n
i=1(xi − x̄)2

(3.17)

The theory of linear regression plays a prominent part in statistical methodology. The

standard results of this theory are not entirely suitable for sample surveys because they require

the assumptions that the population regression of y on x is linear, that the residual variance
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of y about the regression line is constant, and that the population is infinite. If the first

two assumptions are violently wrong, a linear regression estimate will probably not be used.

However, in surveys in which the regression of y on x is thought to be approximately linear, it

is helpful to be able to use ȳlr without having to assume exact linearity or constant residual

variance.

Consequently we present an approach that makes no assumption of any specific relation

between yi and xi. As in the analogous theory for the ratio estimate, only large-sample results

are obtained.

With b as in (3.17), the linear regression estimator of Ȳ in simple random samples is

ȳlr = ȳ + b(X̄ − x̄) = ȳ − b(x̄− X̄) (3.18)

The estimator ȳlr like ȳR have a bias of order 1/n. In finding the sampling error of ȳlr, replace

the sample b by the population regression coefficient B. In Theorem 3.1 the error committed

in this approximation will be shown to be of order 1/
√

n relative to the terms retained. We

first examine the relation between b and B.

Introduce the variate ei defined by the relation

ei = yi − Ȳ −B(xi − X̄) (3.19)

Two properties of the ei are that
∑N

ei = 0 and

N∑
ei(xi − X̄) =

N∑
(yi − Ȳ )(xi − X̄)−B

N∑
(xi − X̄)2 = 0 (3.20)

by definition of B. Now

b =
N∑

yi(xi−x̄)/
N∑

(xi−x̄)2 =
N∑

[Ȳ +B(xi−X̄)+ei]/
N∑

(xi−x̄)2 = B+
N∑

ei(xi−x̄)/
N∑

(xi−x̄)2

(3.21)

A result needed in Theorem 3.1 is that (b−B) is of order 1/
√

n. It is known that
∑N

ei(xi−

x̄)/(n − 1) is an unbiased estimate of
∑N

ei(xi − X̄)/(N − 1). Thus,
∑N

ei(xi − x̄)/(n − 1)

is distributed about a zero mean in repeated samples. Since the standard error of a sample

covariance is known to be of order 1/
√

n,
∑N

ei(xi− x̄)/(n−1) is of order 1/
√

n. But
∑N (xi−
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x̄)2/(n− 1) = s2
x is of order unity. Hence (b−B) is the ratio of these two quantities, is of order

1/
√

n.

Theorem 3.1. If b is the last squares estimate of B and

ȳlr = ȳ + b(X̄ − x̄) (3.22)

then in simple random samples of size n, with n large

V (ȳlr) =
1− f

n
S2

y(1− ρ2) (3.23)

where ρ = Syx/SySx is the population correlation between y and x.

IV. Modified Linear Regression Estimate

The performance of the linear regression estimator can be improved using the value of the

known values of the population parameter of the auxiliary variable, which is positively corre-

lated with the study variable. In this section we will present several modified linear regression

estimators. Subramani et. al. (2012) proposed class of modified linear regression estimators

for population mean Ȳ is

ˆ̄YSK = a
Sy

Cy
+ (1− a)

(
ȳ − byx

ρ
(x̄− X̄)

)
(4.24)

where byx = Syx

S2
x

, Sxy, Sx, Sy are population covariance and standard deviation a is a chosen

scalar. For the sake of deriving its variance the estimator is written in the different form as

given below

ˆ̄YSK = ȳ − Sy

(
a

Cy
e0 +

1− a

Cx
e1

)
(4.25)

where e0 = ȳ−Ȳ
Ȳ

, e1 = x̄−X̄
X̄

, Cy and Cx are the coefficient of variation. Further we write

ȳ = Ȳ (1+e0) and x̄ = X̄(1+e1). It can be easily seen that E(e0) = E(e1) = 0, E(e2
0) = 1−f

n C2
y ,

E(e2
1) = 1−f

n C2
x E(s0e1) = 1−f

n ρCyCx Taking expectation on both sides of equation 4.25, the

expected value of the proposed estimator is

E() (4.26)
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V. Simulation Study

Simulation study is conducted to study the performance of the percentile bootstrap confi-

dence interval for the population mean, its coverage probability as well as the average length.

Sample of size 20, 30, 40 and 50 are taken from Bivariate (X, Y )′ data with known mean

(10, 100)′, known covariance matrix, and high score correlation(ρ = 0.8). From each sample,

100 bootstrap re sample is taken, while replication is done 200 times for every case. The

coverage probability is calculated and shown in Table 1

Table 1. Coverage Probability

Sample Size n
1-α 20 30 40 50
85% .856 .859 .844 .853
90% .919 .910 .913 .899
95% .967 .942 .962 .953
99% .977 .984 .986 .988

The length of each bootstrap confidence interval is calculated and their averaged are reported

in Table 2

Table 2. Average Length

Sample Size n
1-α 20 30 40 50
85% 4.342 5.659 4.554 5.231
90% 4.342 5.659 4.554 5.231
95% 5.067 4.942 4.062 5.043
99% 5.136 4.541 4.086 5.222

From Table 1 we can see that the coverage probability is closer to the confidence level. The

average length is about the same for every confidence level as shown in Table 2.
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