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Abstract
Much research in recent years for evidence evaluation in forensic science has fo-

cussed on methods for determining the likelihood ratio in various scenarios. The like-
lihood of the evidence is calculated under each of two propositions, that proposed by
the prosecution and that proposed by the defence. The value of the evidence is given
by the ratio of the likelihoods associated with these two propositions. The aim of
this research is to evaluate this likelihood ratio under two scenarios. The first is when
the evidence consists of continuous autocorrelated data. The second, an extension to
this, is when the observed data are also believed to be driven by an underlying latent
Markov chain. Four models have been developed to take these attributes into account:
an autoregressive model of order one, a hidden Markov model with autocorrelation
between adjacent data points and a nonparametric model with two different bandwidth
selection methods. Application of these methods will be illustrated with an example
where the data relate to traces of cocaine on banknotes as measured by the log peak
area for the ion count for cocaine product ion m/z 105 in a mass spectrometer. The
likelihood ratios using these four models will be calculated for these data, and the
results compared.
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1 Introduction

Denote a set of evidential data by z = (z1, z2, . . . zn), and two propositions byHC andHB .
Two scenarios will be considered. The first is when the data z are autocorrelated, and the
second is when, in addition, the data are also driven by an underlying latent Markov chain.
The aim of this paper is to evaluate the likelihood ratio given by f(z | HC)/f(z | HB) for
these two scenarios.

In the context of evidence evaluation, the likelihood ratio was introduced in Lindley
(1977) and is used to assign a value to evidence. If we let the prosecution proposition be
HC and the defence proposition be HB than a likelihood ratio larger than one would imply
that the evidence is more likely under the prosecution proposition, and a likelihood ratio of
less than one would imply that the evidence is more likely under the defence proposition. By
combining the likelihood ratio with the prior on the two propositions (which should come
from the decision maker, such as the jury or the judge), posterior odds of the probability
of the prosecution proposition over the defence proposition, given the evidence, can be
obtained. This stems from the odds form of Bayes’ theorem:

f(HC | z)
f(HB | z)

=
f(z | HC)

f(z | HB)
× f(HC)

f(HB)
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Four models are described here to estimate the function f in the likelihood ratio. No
assumption of independence is made between adjacent datapoints. The first model is an
autoregressive model with lag one. The second is a hidden Markov model, and the third
and fourth are non-parametric models, each with a different bandwidth. The models will be
tested using data relating to traces of the cocaine product ion m/z 105 on sets of banknotes.
The two propositions will be, HC , that the banknotes are associated with crime involving
cocaine, and HB , that the banknotes are from general circulation. The estimation of f
will be done with reference to two sets of training data: banknotes associated with crime
involving cocaine and banknotes from general circulation.

2 Models
A crime has been committed. Part of the evidence is a sample of autocorrelated data
z = (z1, . . . zn). To calculate the likelihood ratio for this data, the parameters used in
the function f in the likelihood ratio must be estimated for two sets of data: that associated
with HC and that associated with HB . The set of data associated with HC is denoted by
y = (yij , i = 1, . . .mC , j = 1, . . . nCi). In this set, there are mC different autocorrelated
samples, each containing nCi datapoints. The set of data associated with HB is denoted by
x = (xij , i = 1, . . .mB, j = 1, . . . nBi), with mB different autocorrelated samples, each
containing nBi datapoints. In the following sections, models are described for a general
sample of data w = (w1, . . . wnD). To apply the models, w should be replaced by xi and
D by Bi if the parameters for the model for sample i conditional on the proposition HB

are being estimated, and w should be replaced by yi and D by Ci if the parameters for the
model for sample i, conditional on the proposition HC are being estimated.

2.1 Autoregressive Model

An autoregressive model AR(1) specifies the following relationship amongst the variables:

wt − µ = α (wt−1 − µ) + εt

where t = 2, . . . , nD; εt ∼ N(0, σ2) and w1 ∼ N(µ, σ2).

The parameters required to estimate the function f in the likelihood ratio for each of
the two propositions are therefore θ = (µ, σ, α). The likelihood of the training data can
be used in conjunction with prior distributions to determine posterior distributions for the
model parameters. Posterior distributions can be obtained for each of the nBi samples in
x (denote these parameters by θBi) and for each of the nCi samples in y (denote these
parameters by θCi).

2.2 Hidden Markov Model

In a hidden Markov model, each observed data point is associated with an unobserved state.
The states form a Markov chain and determine the probability density function of the data
point. A Markov switching model is used here, which also allows for dependence between
adjacent datapoints, so that autocorrelation between adjacent datapoints is modelled.

Denote the latent states of the training data associated with HC by SC = {SCij ; i =
1, . . .mC , j = 1, . . . nCi}. Each datapoint yij in y is associated with a latent state SCij .
Similarly, denote the latent states of the training data associated withHB by SB = {SBij ; i =
1, . . .mB, j = 1, . . . nBi}, so that each datapoint xij in x is associated with a latent state
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SBij . Four states are used here, so SCij and SBij can take values in [1, 2, 3, 4], but this
model could be extended to allow a different number of states. The states associated with
the general sample of data w are denoted SD = (S1, . . . SnD). The states are used to allow
for two different mean and variance levels. Four states are required so that the mean level
of the previous datapoint is also encoded in the state of the current datapoint. Let 0 and 1
denote the two sets of mean and variance levels. The four hidden states of the model are de-
fined as, in the format (level of previous datapoint, level of current datapoint): state 1 (0,0),
state 2 (0,1), state 3 (1,0), and state 4 (1,1). The transition matrix, giving the probabilities
of moving between these states, is:

P =


1− p01 p01 0 0

0 0 p10 1− p10

1− p01 p01 0 0
0 0 p10 1− p10


It is assumed that w come from a hidden Markov model given by:

wt − µSt =α(wt−1 − µSt−1) + εSt

where εSt ∼ N(0, σ2
St
) for t ∈ (1, 2, . . . nD), w1 ∼ N(µS1 , σ

2
S1
) and the subscript St

indicates that the parameter value for the current datapoint of state St should be used.

The parameters required are therefore θ = (µ0, µ1, σ
2
0, σ

2
1, α, p01, p10). The likelihood

of the training data can be used in conjunction with prior distributions to determine pos-
terior distributions for the model parameters conditional on each of the two propositions.
Posterior distributions can be obtained for each of the nBi samples in x (denote these pa-
rameters by θBi) and for each of the nCi samples in y (denote these parameters by θCi). A
Metropolis Hastings sampler can be used to obtain these posterior distributions. The calcu-
lation of the likelihood, which is required in the Metropolis Hastings sampler, can be done
using the forward algorithm, as discussed in Rabiner (1989).

2.3 Nonparametric Model

The parametric models assume a Normal distribution for the error terms, an assumption
which is dispensed with for the nonparametric models. As before, a general notation is used.
To distinguish between different samples, the notation is now wi = (wi1, . . . , wnDi

); i =
1, . . . ,mD where mD is the number of samples in the set and nDi is the number of data-
points in the i-th sample. The joint density function of wi may be written as:

fDi(wi1, wi2, . . . winDi
) = fDi(wi1)fDi(wi2|wi1) . . . fDi(winDi

|wi,nDi
−1)

allowing for autocorrelation of lag one. The conditional density function fDi(wit | wi,t−1)
for each i ∈ (1, 2, . . .mD) can be estimated nonparametrically by:

f̂Di(wit|wi,t−1) =
ĝDi(wit, wi,t−1)

r̂Di(wi,t−1)
. (1)

The functions ĝDi and r̂Di are kernel density estimates for sample i, given by:

ĝDi(wit, wi,t−1) =
1

(ni − 1)h1h2

j=ni∑
j=2

K1

(
wit − wij

h1

)
K2

(
wi,t−1 − wi,j−1

h2

)
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and

r̂Di(wi,t−1) =
1

(ni − 1)h3

j=ni∑
j=2

K3

(
wi,t−1 − wi,j−1

h3

)
.

Here, h1, h2 and h3 are bandwidths, and K1,K2 and K3 are kernel functions, see Fan
et al. (1996), Hall et al. (1992) and Silverman (1986) for further details. For applications
of kernel density estimation in forensic science on independent observations see Aitken and
Taroni (2004). The Gaussian kernel is used for all three functions K1,K2 and K3. Two
different bandwidth types are used. The first type is a fixed bandwidth, in which h1, h2 and
h3 remain constant at all values of wit and wi,t−1. The second type is an adaptive nearest
neighbour bandwidth (Breiman et al. (1977)). This type of bandwidth will vary,depending
on the amount of data close by, becoming larger as the amount of nearby data reduces.

Given ĝDi and r̂Di , the conditional density function f̂Di(wit|wi,t−1) in (1) can then be
obtained for each of the mB samples in x and for each of the mC samples in y.

3 Classification for a set of datapoints of unknown type

Let z = (z1, z2, . . . , zn) be the datapoints from a sample for which it is wished to calculate
the evidential value. The likelihood ratio associated with the propositions HC and HB is
given by f(z | HC)/f(z | HB). If this statistic is greater than one, then the evidence
assigns more weight to HC .

3.1 Parametric models

The parameters for which posterior distributions were obtained in the previous section are
denoted by θCi and θBi (for either the autoregressive or the hidden Markov model), where
i denotes the sample used to obtain the posterior distributions. The likelihood f(z|HD)
(swapping D for C or B as appropriate), is given by:

f(z|HD) =

∫
ΘD

f(z1 | θD)f(z2 | z1, θD) . . . f(zn | zn−1, θD)f(θD | w) dθD

'
i=mD∑
i=1

vi

∫
ΘDi

f(z1 | θDi)f(z2 | z1, θDi) . . . f(zn | zn−1, θDi)f(θDi | wi) dθDi

Here wi = xi if D = B and wi = yi if D = C. Let the weights vi be given by
vi = nDi/

∑i=mD
i=1 nDi . Each integral can be estimated using Monte Carlo integration.

3.2 Nonparametric models

When the nonparametric models are used, the likelihood takes a slightly different form. For
proposition HD, the likelihood for z is given by:

f(z1, z2, . . . zn | HD) =f(z1 | HD)f(z2 | z1, HD) . . . f(zn | zn−1, HD)

'
mD∑
i=1

vif̂Di(z1 | HD)f̂Di(z2 | z1, HD) . . . f̂Di(zn | zn−1, HD)
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Hidden Markov AR(1) Nonparametric Nonparametric
Model / AR(1) fixed bw adaptive nn

Associated 0.373 (25/67) 0.371 (26/70) 0.271 (19/70) 0.257 (18/70)
with cocaine
General 0.096 (18/188) 0.151 (29/192) 0.321 (62/193) 0.269 (52/193)
circulation

Table 1: Misclassification probabilities out of (.) samples

where f̂Di(zt | zt−1) is the estimated conditional density of sample i, i ∈ (1, . . . ,mD), for
datapoints t = 2, . . . , nDi and f̂Di(z1) is the marginal density for datapoint 1. The method
for estimating these functions was given in the previous section. vi is a weight assigned to
each sample i, with

∑
vi = 1. Let vi = nDi/

∑i=mD
i=1 nDi as for the parametric models.

4 Results
Tandem mass spectrometry data, taking the form of the ion count for the cocaine product
ion m/z 105 for samples of banknotes are available. Further details can be found in Dixon
(2006) and Lloyd (2009). A peak detection algorithm has been developed which converts
these ion counts into a peak area, which corresponds to a measure of the amount of co-
caine on each of the banknotes within a sample. To reduce the skewness of these data, the
logarithms of these peak areas were taken. For a sample of banknotes brought in by law en-
forcement agencies, it is desired to calculate the likelihood ratio for the propositions: HC ,
that a sample of banknotes is associated with criminal activity involving cocaine, and HB ,
that a sample of banknotes is from general circulation. Two training sets of data were used
to calculate this likelihood ratio. The first, the data associated with HC , or y, consisted
of samples of banknotes seized from a suspect who was found guilty of a crime involving
cocaine. The second set of data, x, associated with HB , consisted of samples of banknotes
which had been taken from general circulation (see Wilson et al (2013)).

Each sample in x and y was treated as the evidential data in turn, and the four mod-
els described earlier were used to estimate the posterior distributions of the parameters
(parametric models) or conditional distributions (nonparametric models) from the remain-
ing data. Details on the prior distributions used are given in Wilson et al (2013). The hidden
Markov model was not used for all samples. Instead, Bayes Factors were calculated for the
autoregressive and hidden Markov models, and the model with the larger Bayes’ Factor
was used for that sample. The likelihood ratio was then calculated for the evidential data.
Misclassification probabilities, where either a sample in x had been assigned a likelihood
ratio of greater than one, or a sample in y had been assigned a likelihood ratio of less than
one, were calculated. These misclassification probabilities are given in table 1.

Some of the samples of banknotes in the set associated with the proposition HC were
contaminated in line with general circulation. As a result, it is not expected that misclassi-
fication probabilities for the set y will be low, as samples with contamination in line with
general circulation will be misclassified. Therefore, misclassification probabilities of gen-
eral circulation samples are used to assess the models. Table 1 shows that the model which
models some samples with a hidden Markov model has the smallest misclassification proba-
bility for the general circulation banknotes, at 9.6%, slightly lower than the 15% misclassifi-
cation probability achieved when using the autoregressive model alone. The nonparametric
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models have much larger misclassification probabilities. Analysis of the absolute values of
the log likelihood ratios indicated that the nonparametric models sometimes produced large
erroneous absolute log likelihood values for misclassified samples. These problems could
be due to lack of data in the tails for some of the conditional distribution estimates.

5 Conclusion
The models developed in this paper give a novel method for calculating the likelihood ratio
of two competing propositions when autocorrelated data are involved. Four models are
described which allow for dependence between adjacent datapoints, and one of the models
also allows for dependence on a latent Markov chain.

The models are tested on data based on cocaine quantities on banknotes. Previous mod-
els used on similar data have assumed independence between adjacent banknotes (Besson
2004, Jourdan et al 2013). The best performance was obtained when samples were mod-
elled by either a hidden Markov model or an autoregressive model, with the model selection
done using Bayes’ Factors. This model had a misclassification probabilitiy of samples from
general circulation of 9.6%.

6 References
Aitken,C.G.G. and Taroni,F. (2004) Statistics and the Evaluation of Evidence for Forensic
Scientists, second edition. Chichester: John Wiley and Sons Ltd.

Besson,L. (2004) Détection des stupéfiants par IMS. Master’s thesis, Univ. of Lausanne.

Breiman,L., Meisel,W. and Purcell,E. (1977) Variable kernel estimates of multivariate den-
sities. Technometrics, 19, 135-144.

Dixon,S.J., Brereton,R.G., Carter,J.F. and Sleeman,R. (2006) Determination of cocaine
contamination on banknotes using tandem mass spectrometry and pattern recognition, An-
alytica Chimica Acta, 559(1), 54-63.

Fan,J., Yao,Q. and Tong,H. (1996) Estimation of conditional densities and sensitivity mea-
sures in nonlinear dynamical systems. Biometrika, 83, 189-206.

Hall,P., Racine,J. and Li,Q. (1992) Cross-validation and the estimation of conditional prob-
ability densities, Journal of the American Statistical Association, 87, 523-532.

Jourdan,T., Veitenheimer,A., Murray,C., Wagner,J. (2013) The quantitation of cocaine on
U.S. currency: survey and significance of the levels of contamination, Journal of Forensic
Sciences, in press.

Lindley,D.V. (1977) A problem in forensic science. Biometrika, 64, 207-213.

Lloyd,G.R. (2009) Chemometrics and pattern recognition for the analysis of multivariate
datasets, PhD thesis, Univ. of Bristol.

Rabiner,L.R. (1989) A tutorial on hidden Markov models and selected applications in speech
recognition. In Proceedings of the IEEE, pp. 257-286.

Silverman,B.W. (1986) Density Estimation for Statistics and Data Analysis. London: Chap-
man and Hall.

Wilson,A., Aitken,C.G.G., Sleeman,R. and Carter,J. (2013), The evaluation of evidence
relating to traces of cocaine on banknotes. Submitted for publication

Proceedings 59th ISI World Statistics Congress, 25-30 August 2013, Hong Kong (Session CPS014) p.3622


