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Abstract 
 

The interest for fitting models to panel data has grown in the last few decades. Modelling 

methods have to consider the variation in the response variable across the population as well as 

across time in this context. We review model fitting statistics under the classical (simple 

random sampling) approach, while we propose new developments on fitting measures when 

working under the complex sampling approach. We modify the Wald goodness of fit test in the 

context of models for covariance structures, which is shown to be equivalent to modifying the 

scaled test statistics. We also propose a modification for the Wald significance test for nested 

hypothesis. Goodness of fit indices are also modified in order be utilised in the complex survey 

data context. 
 

Keywords: covariance structure, goodness of fit, longitudinal surveys, multistage 

sampling.  
 

1. Introduction 
The interest for fitting models to longitudinal complex survey data has grown in the 

last few decades. Longitudinal data modelling methods have to consider the variation 

across the population as well as across time. A wide class of ‘regression-type’ models 

has found a broad range of useful applications with panel survey data (e.g.  Diggle et 

al., 2002). Furthermore, a number of methods have been developed in the survey 

sampling literature to take account of complex sampling schemes in the regression 

analysis of cross section survey data. See Skinner, Holt and Smith (1989), and 

Chambers and Skinner (2003), for references. Moreover, some previous work on 

estimation for panel data models under complex designs has been undertaken, for 

example, by Sutradhar and Kovacevic (2000), Skinner and Holmes (2003), Skinner 

and Vieira (2007), and Vieira and Skinner (2008). See Vieira (2009), for an overview. 

In this paper we extend this broad approach to model fitting statistics in the 

longitudinal data modelling context, allowing for complex sampling designs. We 

review model fitting statistics under the classical (simple random sampling - srs) 

approach, while we propose new developments on fitting measures when working 

under the complex sampling approach. The models we consider are presented in 

Section 2. The paper proceeds in Section 3 to consider model testing statistics in both 

classic and complex survey contexts, and brief remarks are presented in Section 4. 
 

2. Models 

Let the finite population be denoted by Ū, which is treated as fixed on occasions 

T,,1K . Let N represent the size of Ū and TNN
o

⋅= . Let )',,(
1 iTii

YYY K=  be a 

random vector containing T repeated observations on the study variable for unit 

Ni ,,2,1 K=  over the T waves of the survey. Moreover, ( ) ( )βµ
iiYE =  is a 1×T  vector, 

where ( ) ( ) ( )[ ]′= βµβµβµ ,,,,1 iTii
xx K

 and itx  is a vector of values of the covariates. 

A covariance structure model is a model for the TT ×  symmetric population 

variance-covariance matrix of iY , which is 

( ) ( )θµµ Σ=′−−==Σ }]][{[COV
iiiii YYEY ,    (1) 

where COV(.) denote population covariance. We assume (1) is the same for each unit 

i, and that ( ) 21+= TTk  distinct elements of the variance-covariance matrix ( )θΣ  are 

constrained to be functions of the 1×b  parameter vector θ , with kb < .   

If we consider a uniform correlation model (Model A in Skinner and Holmes, 

2003), ( )θΣ  has diagonal values 22

vu
σσ +  and off-diagonal values 2

uσ , where 2

vσ  is the 

Proceedings 59th ISI World Statistics Congress, 25-30 August 2013, Hong Kong (Session CPS015) p.3641



variation on the same individual, 2

uσ  and is the variance across individuals (Lindsey, 

1994), and )',( 22

vu σσθ = , with 2=b . If we consider a transitory random effects model 

with a first-order autoregressive process (Model B in Skinner and Holmes, 2003), then 

)',,( 22 γσσθ vu= , where γ  is a regression parameter and 11 <<− γ . 

 

3. Model testing 
We assume that: (i) the observations are equally spaced in time; (ii) the sample size is 
‘large’ relative to the number of repeated observations; (iii) the sample is selected on 

one occasion and then the same sample units are returned to on each of the 1−T  

subsequent waves; and (iv) there is no nonresponse. Estimation procedures for β  are 

discussed in details by Skinner and Vieira (2007), Vieira and Skinner (2008), and 
Vieira (2009), where methods on inference about the covariance matrix Σ , for the 

variance estimation of Σ̂ , and for estimation of the parameter θ  are also developed 

under the complex surveys approach, including generalized least squares (GLS) and 

pseudo maximum likelihood (PML) methods. 

Note that (1) is our covariance structure hypothesis. Model fit measures are used 
to assist in the evaluation of whether (1) is valid or not, and if not, such measures 

could assist to calculate the deviation of Σ  from ( )θΣ . In this section, let θ̂  denote an 

estimator of θ  which minimizes either ( )MLF θ  or ( )GLSF θ , which are maximum 

likelihood (ML) and GLS fitting functions, respectively, and ( )PMLF θ  or ( )GLSCF θ , 

which are PML and GLS fitting functions, under the complex sampling context.  
 

3.1 Model testing in the classical context  
In this sub-section we work under the assumptions of independent and identically 

distributed observations. Both Σ  and )(θΣ  are unknown population parameters. Thus 

for calculating model fit measures we would in fact need to consider their estimators S 

and )ˆ(θΣ , respectively, where )ˆ(θΣ  is the covariance matrix evaluated at θ̂ . 

 In order to perform a goodness of fit test, we  may  initially define  a  null  and  a  

generic  alternative  hypothesis  as  ( )θΣ=Σ:0H  against Σ:1H , which is an 

unrestricted covariance matrix (any TT ×  positive definite matrix). Let the population 

residual covariance matrix be denoted by Ep, so that  

( )[ ]θΣΣ= -Ep
.        (2) 

When 
0H  is true, Ep is a zero matrix. The sample residual covariance matrix Ê , 

defined as )]ˆ(-S[Ê θΣ= , is the simplest model fit measure. Let ])ˆ([ ttttS ′′ Σ− θ  be 

individual sample residual covariances, where 
tt

S ′
 and 

tt ′Σ )ˆ(θ  are the tt ′th elements in 

S and )(θΣ  respectively.   

Furthermore, Jöreskog and Sörbom (1989) proposed the following statistic for 

summarising the residuals, 

 
( )∑∑

= =′

′′

+

Σ−
⋅=

T

t

t

t

tttt

TT

S

1 1

2

1

])ˆ([
2RMR

θ , 

where RMR stands for root mean-square residual. This measure may be adopted to 

compare the fit of two different models for the same data.   

Sample residuals are not only affected by differences between Σ  and )(θΣ , but 

also by the scales of iY  and by sampling fluctuations (errors). A direct solution for the 

scales issue may be to calculate correlation residuals as (Bollen, 1989) 
tttt rr ′′ − ˆ , where 

ttr ′  is the sample correlation between itY  and tiY ′ , and 
ttr ′ˆ  denotes the model predicted 

correlation, so that 
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tttt

tt
ttr

′′

′
′

Σ⋅Σ

Σ
=

)ˆ()ˆ(

)ˆ(
ˆ

θθ

θ . 

Although this correlation residual is allowed to range from 2−  to 2+ , we should 
expect values rather close to zero for models with a reasonably good fit.  

Regarding sampling errors, even when 
0

H  is true the expected amplitude of the 

individual sample residual covariances depends on n, and 
pEÊlim =∞→n
. Therefore, 

we present below a simultaneous significance test, based on sample residuals. Notice 

that the 
0H  discussed above could be tested via a chi-square test. 

Under multivariate normality of 
iY  and no covariates, if 

0H  holds, if θ  is 

identified, and if 

( )[ ]{ }
θ

θ

∂

Σ∂
=

vech
∆ ,      (3) 

is of full rank b, where (3) is a bk ×  matrix of partial derivatives of elements of 

( )[ ]θΣvech  with respect to the elements of θ , it holds that 2~)ˆ(
bkML

Fn −⋅ χθ  under 
0

H , 

when 
MLF )(θ  is evaluated at the final estimates and the model is true. When 

iY  is 

multivariate normally distributed, 
GLSFn )ˆ(θ⋅  has the same property as 

MLFn )ˆ(θ⋅ .  

Note that 
GLSFn )ˆ(θ⋅  is a Wald goodness of fit test statistic, which may be obtained as 

the minimum value of ( )
GLSF θ , when evaluated at 

GLSθ̂ .  

Satorra (1989), propose asymptotically equivalent significance tests for the 

difference in chi-square statistics for nested models: (i) likelihood ratio test (LRT) or 

chi-square difference test); (ii) Lagrangian multiplier test (LMT) or efficient score 

test; and (iii) Wald test (WT); which all assume that )(θF  is asymptotic optimal, i.e. 

leads to efficient estimators and chi-square statistics. In general, these types of test aim 

to compare an ‘initial’ model with a restricted model, which has a sub-vector of 
parameters that is set to be equal to zero. There are also alternative approaches for 

performing model selection that have been proposed in the literature. Jöreskog and 

Sörbom (1989), for example, have proposed a goodness of fit index (GFI) and an 

adjusted index (AGFI), which penalises the models with more parameters.  
 

4.2 Model testing under complex sampling  
In this sub-section, we consider some further developments on covariance structure 

model fitting statistics when assuming the sample is selected under the complex 

survey design approach. According to Skinner, Holt and Smith (1989), ignoring the 

characteristics of the complex samples can lead to invalid statistical tests. 

For calculating model fit measures in the present context we adopt 
wS  (Vieira and 

Skinner, 2008), the survey weighted sample covariance matrix, as an estimator of Σ , 

considering that Σ== )S())S(( Nwp EEE & , as shown by Vieira (2009). We thus consider 

model fit measures which are functions of 
wS  and Σ .  

For examining (2), i.e. for identifying components of the variance-covariance 

matrix that are not well fit, we may adopt the sample weighted residual covariance 

matrix )ˆ(SÊ θΣ−= wc
, where the subscript c denotes ‘complex’. Moreover, let 

])ˆ([ , ttttwS ′′ Σ− θ  be the individual weighted sample residual covariances, where 
ttwS ′,

 is 

the tt ′ th element in Sw and 
tt ′Σ )ˆ(θ . The RMR measure may be adapted to  

 
( )∑∑

= =′

′′

+

Σ−
⋅=

T

t

t

t

ttttw

c
TT

S

1 1

2

,

1

])ˆ([
2RMR

θ
, 

which has as special case the RMR measure, when the sampling weights are constant.  
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Theory developed in the categorical complex survey data analysis and 

modelling literature (Rao and Scott, 1979) suggests that, under complex sampling, 

PML
Fn )(θ⋅ , would not be asymptotically chi-squared distributed. Simple corrections 

have been proposed, which may are adapted here to be applied to 
PMLFn )(θ⋅  in order 

to make it approximately chi-squared distributed. We follow an approach proposed by 

Skinner (1989, Section 3.4). 
   

Remark 1: We initially consider the case of a GLSC type estimator, obtained by 

minimizing the ( )
GLSC

F θ  fitting function, with matrix U given by  

 ( )KWWK2U ⊗′⋅= ,      (4) 

where W is any consistent estimator of Σ . Under this situation, a Wald goodness of fit 

test statistic is given by (Skinner, 1989) 

 [ ] ( )[ ]{ } [ ] ( )[ ]{ }θθ Σ−
′

Σ−⋅= −
vechvechvechvechnX wwsrs SUS 12

W,
, 

which implies,  

 }]S)({[
2

1 212

W,

−Σ−⋅







⋅= wsrs ItrnX θ , 

when 
wS  is considered as a choice for W in (4).  Note, nevertheless, that according to 

Skinner (1989), the test statistic 
2

W,srsX  is no longer asymptotically chi-squared 

distributed, but in fact asymptotically   

 ∑
−

=

bk

d

dsrsX
1

2

1

2

W, ~ χλ  

under 0H , where 
2

1χ  are independent chi-squared distributed random variables, and 

dλ  are non-zero eigenvalues of  

 ')U'(UCUCUH 11111 ∆∆∆∆⋅−= −−−−−
cc , 

with 
cC  defined as the asymptotic covariance matrix of [ ]

w
vech S . As a one moment 

approximation (Skinner, 1989) 

 
)H(

)( 2

W,

tr

Xbk
srs

⋅−
,        

is asymptotically distributed as a 2

bk −χ , and may be adopted for testing the goodness of 

fit of a covariance structure model in a complex sampling context. We also consider 

substituting matrix U by 
c

Ĉ , i.e.  

 [ ] ( )[ ]{ } [ ] ( )[ ]{ }θθ Σ−
′

Σ−⋅= vechvechvechvechnX
wcw

SĈS
2

W
, 

where 
c

Ĉ , given by  

( ) ( ) ( ) 1111111 U UCUUˆCOV
−−−−−−− ∆∆′∆∆′∆∆′= cna θ ,     

is a consistent estimator for 
cC  (Skinner and Holmes, 2003), with 

[ ]{ }
wc

vechn SVARC ⋅= . In this context, 
2

WX  is approximately distributed as 
2

bk −χ  

under 0H  (Skinner, 1989). Note that when U is consistent for Cc, 

)H(

)( 2

W,2

W,

2

W
tr

Xbk
XX srs

srs

⋅−
== , as bktr −=)H(  in that situation.  ■ 

 

We now consider a Wald significance test for nested hypothesis for situations 

where the PML fitting function is adopted. Note that we shall follow an approach 

proposed by Skinner (1989, Section 3.4).  
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Remark 2: We assume that the asymptotic covariance matrix of [ ]
w

vech S  and the 

information matrix of the model are non-singular. Thus, let 
rPML ,θ̂  be the PML 

estimator for the restrictive (nested) model, and let 
uPML ,θ̂  be the PML estimator for 

the covariance structure model without constraints. Let 
R

θ  be a 1
* ×b  vector when 

0=
R

θ  corresponds to the restraints imposed to the unrestricted model, where bb <* . 

We propose a modification to the Wald test, so that 

 
R

uPML

uPML

R

uPML

uPML

uPML

R

uPML
R

uPMLc
a ,

1

,

,

,

,

,

,
ˆ

ˆ

ˆ
)ˆcov(

ˆ

ˆ
'ˆWT θ

θ

θ
θ

θ

θ
θ ⋅















 ′















∂

∂
⋅




⋅

′















∂

∂
⋅=

−

,   

where we adopt the approach of Binder (1983), adapted to the covariance structure 

models context, for calculating )ˆcov( ,uPMLa θ . When )ˆ(
1 θθ −⋅−

PMLn  is 

asymptotically normal distributed, then the modified WTc statistic introduced above is 

asymptotically 2
*

b
χ  distributed (Skinner, 1989) under 0H .       ■ 

 

We also propose modifying the overall model fit descriptive measures, such as the 

Jöreskog and Sörbom (1989) goodness of fit indices (GFI). Therefore, let   

 









Σ

−Σ
−=

−

−

])S)ˆ([(

])S)ˆ([(
1GFI

21

21

,

w

w
PMLc

tr

Itr

θ

θ ,     

be a modified version GFI for complex survey data, when considering 
PMLF )(θ . We 

also modify Tanaka and Huba (1985) GLS version of goodness of fit indices, so that   

 







 Σ−

−=
−

T

Itr w
GLSCc

])S)ˆ([(
1GFI

21

1

,

θ , or  

 











 Σ−′Σ−

−=
−

−

]S[U]'S[

)]}ˆ([]S[{U)]}ˆ([]S[{
1GFI

1

1
2

,

ww

ww
GLSCc

vechvech

vechvechvechvech θθ .  

Moreover, modified adjusted fit indices (AGFIc), could be calculated as  

 ( )
cc

k
GFI1

df
1AGFI −⋅








−= .     

  

5 Concluding remarks  
Model testing is an important step in any model fit procedure. According to Menard 

(1991), in longitudinal models there is an increase to problems comparably to cross-

sectional models in this regard. Eltinge (1999) acknowledged the need to improve and 

to develop new techniques for model assessment and diagnostic in the complex survey 

data context. Classic measures that are often used in model testing are appropriate for 

situations where data is obtained from a srs design.  

We propose some new developments on model fitting statistics when working 

with longitudinal data in a complex survey design framework. Following Rao and 

Scott’s conceptions (Rao and Scott, 1979), we propose modifying the Wald goodness 

of fit test in the context of models for covariance structures. Furthermore, we also 

propose a modification for the Wald significance test for nested hypothesis, following 

an approach suggested by Skinner (1989, Section 3.4). Goodness of fit indices 
proposed by Jöreskog and Sörbom (1989) are also modified in order be utilised in the 

complex survey data context. 

Further research could involve evaluating the consequences of using standard 

model fit test techniques without consideration to the complexity of the sample, by 

extending the simulation study performed in Vieira and Skinner (2008). 
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