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We propose a new empirical likelihood approach which can be used to construct design-based confi-

dence regions of regression parameters under unequal probability sampling. The proposed approach

gives confidence regions which may have better coverages than standard confidence regions and pseudo

empirical likelihood confidence regions which rely on variance estimates and design-effects. The pro-

posed approach does not rely on variance estimates, design-effects, re-sampling or linearisation, even

when the regression parameter is not linear. It also gives suitable confidence regions when the point

estimator is biased. The proposed approach can also be adjusted to account for large sampling frac-

tions.
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Introduction

Let U be a finite population of N units; where N is a fixed quantity which is not necessarily known.

Let θ0 be an r-dimensional population parameter of interest. Suppose that θ0 is the unique solution

of the following set of estimating equation (e.g. Qin and Lawless, 1994).

G(θ) = 0, with G(θ) =
∑
i∈U

gi(θ);(1)

where gi(θ) is an r-dimensional function of θ and of characteristics of the unit i. This function does

not need to be differentiable.

Suppose we are interested in modelling the relationship between a response (or dependent)

variable yi and some r-dimensional covariates (or independent variables) ui. For example, with a

linear model, θ0 is a regression parameter and

gi(θ) = ui(yi − u′iθ).

With a non-linear regression, we have

gi(θ) =
∂f(ui,θ)

∂θ
{yi − f(ui,θ)} ,

where f(ui,θ) is a non linear function. For a robust regression, we have

gi(θ) = uiψ(yi,u
′
iθ),

where ψ(·) is a robust function (Huber, 1981).

Suppose that we wish to estimate θ0 from the data of a sample s of size n selected with a single

stage unequal probabilities without replacement sampling design. We consider that the sample size

n is a fixed (non random) quantity. We adopt a design-based (non-parametric) approach; where the

sampling distribution is specified by the sampling design and where the values of the response variable

and the covariates are fixed (non random) quantities.
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Empirical likelihood approach

We propose to use the following empirical likelihood function (e.g. Owen, 2001).

L(m) =
n∏
i=1

mi

N
,(2)

where mi is the unit mass of unit i in the population (e.g. Deville, 1999).

Hartley and Rao (1969) showed that (2) is the an empirical likelihood function under unequal

probability sampling with replacement, as mi/N is the probability to observe the i-th unit. Owen

(2001, Ch. 6) showed that (2) is a suitable empirical likelihood function when the units are selected

independently with a Poisson sampling design. Although under fixed size sampling designs, the units

are not selected independently, we propose to use the empirical likelihood function (2) under fixed size

sampling designs. The aim is to show that this empirical likelihood function can be used for point

estimation and to construct confidence regions (or to derive tests) under fixed size sampling designs.

The maximum likelihood estimators of mi are the values m̂i which maximise the log-empirical

likelihood function

`(m) =
n∑
i=1

log (mi) ,(3)

subject to the constraints mi ≥ 0 and

n∑
i=1

mici = C;(4)

where
∑n

i=1 denotes the sum over the sampled units, ci is a known Q× 1 vector associated with the

i-th sampled unit and C is a known Q× 1 vector. We also assume that the constraint (4) is such that

the fixed size constraint
n∑
i=1

miπi = n(5)

always holds, where πi denotes the inclusion probability of unit i. Under equal probability sampling,

we have that πi = n/N , and the constraint (5) reduces to
∑n

i=1mi = N which is the constraint

adopted under equal probability sampling (e.g. Rao and Wu, 2009). Berger and De La Riva Torres

(2012) showed that the solution of this maximisation is given by

m̂i =
(
πi + η′ci

)−1
,(6)

The quantity η is such that the constraint (4) holds. This quantity can be computed using an iterative

Newton-Raphson procedure (e.g. Berger and De La Riva Torres, 2012; Rao and Wu, 2009).

The maximum empirical likelihood estimator θ̂ of θ0 is defined by solution of the following

estimating equation.

Ĝ(θ) = 0, with Ĝ(θ) =

n∑
i=1

m̂i gi(θ);(7)

where m̂i is defined by (6). We assume that the gi(θ) are such that Ĝ(θ) = 0 has a unique solution.

The estimator θ̂ is a maximum empirical likelihood estimator because it also minimises the empirical

log-likelihood ratio function (or deviance) defined by (8).

For example, suppose that we would like to fit a linear model with only an intercept (ui = 1).

In this case, gi(θ) = yi − θ. If ci = πi and C = n, we have that mi = π−1i and

Ĝ(θ) =
n∑
i=1

gi(θ)

πi
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is the Horvitz and Thompson (1952) estimator of the function (1). As gi(θ) = yi − θ, we have

that θ̂ is the Hájek (1971) estimator of the population mean; that is, θ̂ = N̂−1π
∑n

i=1 yiπ
−1
i , where

N̂π =
∑n

i=1 π
−1
i .

Empirical log-likelihood ratio function

The main advantage of the empirical likelihood approach is its capability of deriving non-parametric

confidence regions which do not depend on variance estimates or on the normality of the point esti-

mator. In this Section , we propose to use the empirical log-likelihood ratio function defined by (8)

to derive empirical likelihood confidence regions.

Let m̂i be the values which maximise (3) subject to the constraints mi ≥ 0 and (4) when ci = πi
and C = n. Note that mi = π−1i in this situation. The maximum value of the empirical log-likelihood

function is given by `(m̂) = −
∑n

i=1 log(πi). Let m̂∗i be the values which maximise (3) subject to the

constraints mi ≥ 0 and (4) with ci = c∗i and C = C∗, where c∗i = (πi, gi(θ))′ and C∗ = (n,0)′. Let

`(m̂∗,θ) be the maximum value of the empirical log-likelihood function. The empirical log-likelihood

ratio function (or deviance) is defined by the following function of θ.

r̂(θ) = 2 {`(m̂)− `(m̂∗,θ)} ·(8)

It can be easily shown that r̂(θ̂) = 0. Hence θ̂ is indeed the maximum empirical likelihood estimator

of θ0, because it minimises the empirical log-likelihood ratio function. Berger and De La Riva Torres

(2012) showed how the stratification can be taken into account by including the stratification variables

within the vectors ci and c∗i .

We will show that under a set of regularity conditions, r̂(θ0) follows asymptotically a chi-squared

distribution with r degree of freedom when the sampling fraction, n/N , is negligible. This property

relies on the fact that

Ĝπ(θ0) =
n∑
i=1

gi(θ0)

πi
,(9)

is a vector of Horvitz and Thompson (1952) estimator which follows a multivariate normal distribution

asymptotically (Berger, 1998; Hájek, 1964; Vı́sek, 1979).

Empirical likelihood confidence regions

As r̂(θ0) follows asymptotically a chi-squared distribution, the (1− α) level empirical likelihood con-

fidence region (Wilks, 1938) for the population parameter θ0 is given by the following set{
θ : r̂(θ) ≤ χ2

df=p(α)
}
,(10)

where χ2
df=p(α) is the upper α-quantile of the chi-squared distribution with r degree of freedom. Note

that r̂(θ) is a convex non-symmetric function with a minimum when θ is the maximum empirical like-

lihood estimator. This region can be found using a bijection search method. This involves calculating

r̂(θ) for several values of θ.

Let θ0 = (θ′1,θ
′
2)
′; where θ1 is an r1-dimensional vector (r1 < r). Suppose that we would like to

derive a confidence region for the parameter θ1. The parameter θ2 is treated as a nuisance parameter.

Consider

r̂(θ1) = 2 {`(m̂)−Maxθ2 `(m̂
∗,θ)} ;

where Maxθ2 `(m̂
∗,θ) is the maximum value of `(m̂∗,θ) with respect to θ2, for a fixed value of θ1. We

will show that r̂(θ1) follows asymptotically a chi-squared distribution with r1 degree of freedom when
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the sampling fraction is negligible. Hence, the set {θ◦1 : r̂(θ◦1) ≤ χ2
df=r1

(α)} gives a confidence region

for θ1.

Empirical Likelihood Approach with Auxiliary Variables

In practice, population control totals of auxiliary variables are often known and this information is

often taken into account at the estimation stage. Let xi be the value of an auxiliary variables attached

to unit i. Suppose that the control total X =
∑

i∈U xi is known. Traditional approaches (Birch,

1963) consist in adding these auxiliary variables within the covariates ui. However, in this situation,

a different model is fitted and in practice we may want not to include the variable xi within ui. In

the approach proposed, we do not include xi within ui. The variable xi is use to derive the weights

m̂i of the estimating equation.

Let ci = (xi, πi)
′ and C = (X, n)′. Berger and De La Riva Torres (2012) showed that

Ĝ(θ) = Ĝπ(θ) + B̂(X − X̂π) + ε̂,(11)

where X̂π =
∑n

i=1 x̆i, ‖ε̂‖ = op(N),

B̂ =

∑n
i=1(x̆i − n−1X̂π)(ği(θ)− n−1Ĝπ(θ)∑n

i=1(x̆i − n−1X̂π)2
,

x̆i = xiπ
−1
i and ği(θ) = gi(θ)π−1i . Note that B̂ is the estimator of the covariance between Ĝπ(θ)

and X̂π divided by the estimator of the variance of X̂π under a with replacement pps sampling design

(e.g. Särndal et al., 1992, p. 99). Therefore B̂ is the optimal regression coefficient (e.g. Berger et al.,

2003; Isaki and Fuller, 1982; Montanari, 1987; Rao, 1994; Särndal, 1996) when the sampling fraction

is negligible. Hence, the empirical likelihood estimator is asymptotically optimal. The result (11) can

be generalised when xi is a vector of values of auxiliary variables. When N is known, we recommend

to use xi = 1 or to include a variable equal to one into xi. This may improve the efficiency of the

maximum empirical likelihood estimator.

With auxiliary variables, the confidence regions have to be constructed using the following

restricted empirical likelihood approach proposed by (Berger and De La Riva Torres, 2012), because

the function (8) may not converge to a chi-square distribution. Let ci = ċi, c
∗
i = (ċ′i, gi(θ0))

′,

C = (X ′,n′)′, and C∗ = (X ′,n′,0)′, with ċi = (x′i, π̃i(x))′; where π̃i(x) = m̂i(x)−1. Let `(m̂,x)

be the maximum value (3) under the constraint (4) with ci and C. Let `(m̂∗,x,θ) be the maximum

value (3) under the constraint (4) with c∗i and C∗. In both cases, we consider that the constraints (4)

are such that
∑n

i=1miπ̃i(x) = n. The restricted empirical log-likelihood ratio function is given by

r̂x(θ) = 2 {`(m̂,x)− `(m̂∗,x,θ)} ·(12)

Berger and De La Riva Torres (2012) showed that r̂x(θ0) follows asymptotically a chi-squared distri-

bution with r degree of freedom. Note that π̃i(x) can be replaced by the inverse of any calibration

weights (e.g. Deville and Särndal, 1992) which are calibrated with respect to (x′i, πi)
′, as the restricted

empirical log-likelihood ratio function still follows a chi-squared distribution in this situation. Note

that π̃i(x) may be larger that one. However, this does not cause any problem. Berger and De La

Riva Torres (2012) showed how the stratification can be taken into account by including the stratifi-

cation variables within the vectors ci and c∗i .

Non-negligible sampling fractions

With large sampling fractions, the empirical log-likelihood ratio function does not necessarily follow

a chi-squared distribution. Berger and De La Riva Torres (2012) proposed to adjust the constraint in
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order to obtain a chi-squared distribution asymptotically. Consider ci = πi and C = n. We propose

to use c∗i = qi(πi, gi(θ))′ and C∗ = (
∑n

i=1 qi,
∑n

i=1(qi− 1)gi(θ)π−1i )′, with qi = (1− πi)1/2. Let m̂∗i be

defined by

m̂∗i =
(
πi + η∗

′
c∗i

)−1
,(13)

where η∗ is such that
∑n

i=1 m̂
∗
i c
∗
i = C∗ holds. We propose to use the same empirical log-likelihood

ratio function (8). The empirical log-likelihood ratio function is still defined by (8) with `(m) given

by (3). We will show that under a set of regularity conditions, r̂(θ0) follows asymptotically a chi-

squared distribution with r degree of freedom for any sampling fractions. Hence empirical likelihood

confidence regions can be constructed using (10). Berger and De La Riva Torres (2012) showed how

the stratification can be taken into account by including the stratification variables within the vectors

ci and c∗i .

The qi are finite population corrections factors proposed by Berger (2005). The qi reduce the

effect on the confidence region of units with large πi. For example, if πi = 1, then m̂iπi = m̂∗iπi = 1.

This implies that this unit will have no contribution towards the empirical likelihood functions and any

confidence regions. This is a natural property as this unit does not contribute towards the sampling

distribution. Note that we propose to adjust the constraints by quantities which do not need to be

estimated, unlike the pseudo empirical likelihood approach (Wu and Rao, 2006) which adjusts the

empirical log-likelihood ratio function by a quantity that needs to be estimated (the design effect).

Conclusions

Standard confidence regions based upon the central limit theorem can perform poorly when the sam-

pling distribution is not normal. For example, the lower bounds of a confidence region can be negative

even when the parameter of interest is positive. The coverage and the tail errors can be also different

from their intended levels. On the other hand, empirical likelihood confidence regions may be better in

this situation, as empirical likelihood confidence regions are determined by the distribution of the data

(Rao and Wu, 2009) and as the range of the parameter space is preserved. Note that the distribution

of a point estimator of is not necessarily normal, and the proposed empirical likelihood approach does

not rely on the normality of the point estimator.

Standard confidence regions based on the central limit theorem require normality and variance

estimates which often involve linearisation or re-sampling. The proposed method does not rely on nor-

mality, variance estimates, linearisation or re-sampling, even if the parameter of interest is not linear.

Empirical likelihood confidence regions can be easier to compute than standard confidence regions

based on variance estimates. It provides an alternative to bootstrap, when linearisation cannot be

used. The proposed approach has some advantages over the bootstrap approach. It is less computa-

tionally intensive than the bootstrap. The proposed approach naturally includes auxiliary information

and the information about the sampling design. This is particularly useful under informative sampling

(Pfeffermann, 2009).
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