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Abstract 

In the near future, tens of millions of load curves measuring the electricity 
consumption of French households in small time intervals (probably half hours) will 

be available. All these collected load curves represent a huge amount of information 

which could be exploited using sampling techniques. In particular, the total 
consumption of a specific customer group (for example all the customers of an 

electricity supplier) could be estimated using sampling methods. Unfortunately, data 

collection, like every mass process, may undergo technical problems at every point of 
the metering and collecting chain resulting in missing values. This problem reduces 

the accuracy of the estimators and may generate bias and in order to minimize these 

consequences, we have to impute missing values. Two types of imputation methods 

are usually implemented in this context: what we will call “static” methods coming 
from the sampling theory (for example regression imputation) consisting in imputing 

the missing value using the consumption of other units at the same instant and 

possibly auxiliary information and what we will call “dynamic” methods coming from 
the time series theory (for example exponential smoothing) imputing the missing 

value using the consumption of the same unit at other instants. The aim of this 

communication is to present new imputation methods taking into account 

simultaneously the so-called static and dynamic information. As we use more 
information, these combined methods are expected to perform better than static or 

dynamic ones. The optimal combination depends on the length of the missing values 

series and on the position of the missing value in the series. Two ways of combining 
the information (linear regression of real values on estimated values for the 

respondents and minimization of the global estimated imputation error) are compared 

to each other and to static and dynamic ones, on real datasets. The variances of the 
combined estimators are estimated using a population bootstrap. 
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1. Introduction  

In the next few years in France, tens of millions of smart meters will be deployed and 
will collect the individual load curves of residential and business customers at short 

time steps (probably half hours). This deployment will result in a huge increase in the 

amount of available data for energy suppliers such as EDF (Electricité de France) and 
power grid managers. However, it may be complex to stock and exploit such a large 

quantity of information, therefore it will be relevant to use sampling techniques to 

estimate load curves of specific customer groups (e.g. market segments, possessors of 
a specific equipment or clients of an energy supplier). Most studies are performed at 

an aggregated level so we usually don’t need to preserve the coherence of the 

individual curves. 

Unfortunately, data collection, like every mass process, may undergo technical 
problems at every point of the metering and collecting chain resulting in missing 

values. This problem is very similar to nonresponse in survey sampling: it deteriorates 

the accuracy of the estimators and may generate bias if the clients affected by missing 
values are different from the clients with complete curves. In order to reduce the 

impact of this phenomenon, an often used solution consists in imputing the missing 
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values, i.e. filling in the gaps with values as pertinent as possible. 

For this purpose, two types of methods are commonly applied: 

- Techniques used in survey methodology, consisting in carrying out the 

imputation independently, instant by instant, using the consumption of other 
units from the sample at the considered time to determine the imputed value. 

This class of methods includes for example regression imputation, ratio 

imputation and class mean (documented for example in Ardilly (2005)) or 
donor based imputation such as hot deck imputation (Andridge and Little 

(2010)) Later in the article we will refer to these methods as “static” methods. 

- Times series based techniques, consisting in completing each curve 
independently by exploiting the information provided by non missing values 

of the curve and that we will refer to as “dynamic” methods. We can cite for 

example Holt-Winters triple exponential smoothing (Winters (1960)) or more 

basic methods such as linear interpolation or historical imputation (using the 
value observed a week before). These methods are commonly used by EDF 

statisticians because, contrary to the static ones, they preserve the internal 

coherence of each curve. Nevertheless they can create biases if the 
nonresponse occurrence process is not independent from the value of the 

electric consumption.   

With both types of techniques, some information is left aside (information contained 
in the rest of the curve for static methods and information provided by the rest of the 

sample at the considered instant for dynamic ones). In this paper, we will propose and 

try out two different ways of combining one or more static imputation methods (also 

called static estimators) and one or more dynamic imputation methods (dynamic 
estimators) to exploit more information and to enhance the quality of estimations. 

These methods, developed in the context of electrical consumption studies can thus be 

applied to any curves sample. 

2. Methods  

We consider the problem of estimating the global electric consumption of a finite 

population consisting in N customers at different times  :(Yt)t=1..T, with  

, 

where  denotes the consumption of unit i at the time t. We select a sample s of size 

n according to a given sampling design p(s). Let  and  denote the 

Horvitz-Thomson weight. In the absence of nonresponse, a standard estimator of  is:  

 

Let rt and ot denote respectively the subsets of respondents and non-respondents
1
 at 

time t and let  denote the imputed value for unit i at time t. The imputed estimator 

in presence of nonresponse becomes: 

 

The missing value layout concept: 

                                                        
1 In an attempt to be concise, we will use the classical survey sampling terminology and refer to units without or with a 

missing value at time t as “respondent” or “nonrespondent” at time t, even if the occurrence of missing values does not 

result from the will of the client. 
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The relative performances of imputation methods depend on the length of the missing 

values sequence and on the position of the considered missing value in the sequence: it 

seems intuitive that dynamic methods will perform better for short gaps or near the 

extremities of the gap whereas these considerations have no influence on static 
methods which are implemented independently for each instant, regardless of the rest 

of the curve. 

Therefore, we define here the concept of “layout” of a missing value, which in this 
article will refer simultaneously to the length of the sequence the missing value 

belongs to and to its location in the sequence. We propose here to find the optimal 

combination of static and dynamic methods for each missing value layout.  

To be perfectly thorough we should define one layout for each length and each 

location in the sequence (e.g. “third missing value in a sequence of 12”) but in order to 

limit computation time, we will gather together some of the layouts (e.g.: “isolated 

missing value”, “missing value in a sequence of 3”,” missing value near the extremity 
in a sequence of 10”,…). 

In particular, we will gather in a unique layout all the missing values of « too » 

incomplete curves, that is to say curves with a missing values rate over a threshold 
defined by the statistician. These curves do not contain enough information to use a 

dynamic method so we will only apply a static one.  

Combination methods: 

As mentioned in the previous section, the efficiency of dynamic methods depends on 

the missing value layout but is not impacted by the missing values rate at the 

considered instant whereas the efficiency of static methods depends only on the 

features of the instant and not on the missing value layout. Moreover static imputation 
can be improved by grouping units into homogenous imputation classes according to 

some auxiliary information. In order to take all these elements into account we will 

determine the optimal combination of static and dynamic methods independently 

for each triplet (instant x layout x imputation class).  

 

We propose the following procedure for combining the estimators: 

- 1. For each missing value of the dataset, estimate the imputed values for the 
static and dynamic estimators. 

- 2. For each instant, simulate missing values of each layout for each 

respondent, and collect the predicted values given by static and dynamic 
estimators for these simulated gaps. 

- 3. For each triplet (instant x layout x imputation class), assess the quality of 

the two methods by comparing the imputed values to the real ones on the 
respondents’ dataset and, depending on their relative performance, determine 

the optimal combination. 

- 4. Apply these combinations to real missing values.  

 
The most intuitive way to carry out the third step of this procedure is to use a linear 

combination of the estimators. In that paper, we will present two ways of finding the 

combination coefficients: linear regression and global imputation error estimation.  
 

The first proposed combination method is to fit the linear regression of the real value 

on the predicted values estimated by each estimator (static and dynamic) on the 
respondents’ dataset. As mentioned in step 2, in order to find these predicted values  

we have to simulate missing value sequences (for each layout) and to collect the 

predictions. 

 
For a given triplet (instant x layout x imputation class), assume the model: 
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Where  denotes the static prediction for unit i (unique for all layouts) and  the 

dynamic one (depending on the layout).  We will then assume that  are iid white 

noises and fit this model using Ordinary Least Squares (OLS). It will give us the 

coefficients  for each triplet which will be used in step 4 to impute each missing 

value:  . The time indicator t is omitted to lighten the notations. 

 
This method seems intuitive and natural and its implementation is also quite easy. 

Moreover, the presence of the intercept in the regression can correct potential biases of 

the dynamic estimator. Furthermore, we can assume that the resulting prediction will 

not be too bad at the individual level because the regression is specifically conceived 
to minimize individual prediction errors. However, this method is based on an 

individual optimality criterion and not on a global one, so we can’t be sure that it also 

produces the best estimator for the aggregated curve on the whole sample and yet we 
often want to be as precise as possible at the global level. For this reason, we have 

developed a second combination method based on an aggregated quality criterion, 

presented in the next paragraph. 

 
For a given triplet (instant x layout x imputation class), we want to determine the 

combination parameter  such as the combined imputed value 

–  has “the best performance as possible” at the aggregated level according 

to a “well chosen” criterion.  

Let  denote the imputation error for method e (e=s or d) and unit i (at time t): 

. The  can be calculated for each respondent.  

Let’s define the “estimated global imputation error” of an estimator e (e=s or d) as : 

 

Where  denotes the estimated presence probability of unit i (estimated by building 

homogenous nonresponse groups and then estimating the presence rate at the 

considered instant for each group) and  the respondents’ subset (of imputation class 
c). Time and configuration indicators are omitted to lighten the notations. 

 

The lower this estimated global imputation error is, the better the estimator is. Indeed, 
each individual error is weighted proportionally to its sampling weight and its 

missingness probability  and the  is an expansion term used to extrapolate 

results on the respondent subset to the whole sample. The interaction of two errors 
(e.g. if a dynamic method has a constant bias) is also taken into account thanks to the 

second term.  

We will choose the combination parameter   and impute the value: 

–  

We can actually demonstrate that, as the dynamic and static error are independent, this 

parameter  minimizes an estimator of the mean square error of  conditionally to 
the observed sample and nonresponse. 

 

Contrary to the linear regression, this combination method aims to optimize the 

imputation at a global level. Its main drawback is that it doesn’t include any intercept, 
so the estimated total after imputation could be biased if the dynamic imputation 

method is biased. However, we can reasonably think that, if its bias is too big, the 

dynamic method will have a small weight in the combined estimator. 
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The extension of these two combination methods to more than one dynamic and/or 

static estimators is straightforward. 

 

Variance estimation: 
 

To estimate the variance of the total after imputation, we have developed a variance 

estimation method based on Booth’s population bootstrap (1994). 

We build a superpopulation by replicating xi times the curve of each unit i of the 

sample (including the incomplete ones) where  and then, as the 

weights are not always integers, we complete the population with a simple random 
sampling. Then we draw with replacement a large number of resamples of size n (the 

original sample size) with respect to the original sampling design (stratifications, 

inclusion probabilities, balance,…). Next, we impute independently the missing values 

on each resample using the chosen combining method and calculate the total after 
imputation for each resample. Finally the observed variability of that imputed total (at 

each instant) among the resamples provides an estimator of the variance. 

Then, in order to take into account the randomness of the nonresponse mechanism, we 
need to add a corrective term. Indeed, the global variance can be decomposed into: 

 

Where ,  denote the expectation and variance with respect to the nonresponse 

mechanism and ,  the expectation and variance with respect to the sampling 

design. The bootstrap procedure gives an estimation of , so we have to add an 

estimate of . Assuming that the nonresponse probability is constant by class,  can 
be estimated by: 

 

With  the imputed value of i for layout c, K and C respectively the number of 

imputation classes and layouts,   the probability of layout c if the value is missing. 

 
3. Simulations on a real dataset 

We worked on a sample of 770 complete load curves with a measure every half hour 

for two weeks. For each curve, the electricity tariff and previous yearly consumption 

of the client is available. We created six imputation classes by separating the clients 
into three homogenous consumption groups for each of the two tariffs. In order to 

focus on the impact of nonresponse, we worked on the whole datasets instead of 

drawing samples. 

On that curves, we simulated missing data sequences of size 1, 2, 3, 4, 24 and 48, 

occurring randomly with a homogeneous probability for every client and every instant, 

for a total nonresponse rate of 10%. Then we added simultaneous missing values 
sequences of length 1 and 48 for 10% of the units. This missing data simulation 

process was repeated 80 times on the original sample. 

We tested the following imputation methods: mean class imputation, regression on the 

previous year consumption, linear interpolation, triple exponential smoothing, triple 
exponential smoothing and regression imputation combined by linear regression, triple 

exponential smoothing and regression imputation combined by global imputation error 

estimation. 
 

4. Results 
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For each imputation method, and on each sample, we measured the mean and 

quantiles of the relative estimation errors over the instants :  

(global level) and  (individual level) and then calculated the mean of 

those quantities (mean and quantiles of REE) over all the samples:  

 Global level REE (%) Individual level REE (%) 

 Method Mean Medi
an 

q10
% 

q25
% 

q75
% 

q90
% 

Mean Medi
an 

q10
% 

q25
% 

q75
% 

q90
% 

1.Class mean 0,89 0,73 0,14 0,34 1,27 1,85 75 49 9 22 93 158 

2.Régression 
imputation 0,85 0,70 0,13 0,33 1,21 1,78 63 43 8 20 77 123 

3.Linear 
interpolation 1,23 1,01 0,18 0,47 1,75 2,54 65 34 5 13 77 159 

4. Smoothing 0,83 0,68 0,12 0,31 1,18 1,77 56 31 5 13 66 131 

5.Combinatio
n  (regress) 0,72 0,59 0,11 0,28 1,04 1,52 53 33 6 15 62 110 

6.Combinatio
n (global crit) 0,71 0,59 0,11 0,28 1,02 1,49 53 34 6 16 62 108 

 

The individual results were also detailed for each sequence length. We also analysed 
the combination coefficients in the second method and, logically, the weight of the 

static estimator increases when the length of the sequence grows. 

 

5. Analysis and discussion  

In our tests, static methods performed better than dynamic ones at the global level and 

at the individual level for long gaps ( 24 missing values), whereas dynamic ones 
were better at an individual level for short gaps. Combined methods perform better 

that static or dynamic ones at the global level and at the individual one for long gaps. 

The combination using the global criterion seem to give slightly better results. The 

calculation times are quite reasonable (< 1 hour by sample) and are mainly due to the 
dynamic imputation process. 

6. Conclusions 

We have presented here an imputation procedure using an adjusted combination of 
static and dynamic imputation methods for each instant, class of units and missing 

values sequence length. Two ways of combining have been presented: the regression, 

conceived to minimize the individual imputation error, and a global criterion which is 
recommended if we are only interested in the total estimator.  

In both cases, this combination reduces the precision loss due to missing values at the 

global level and at the individual one for long gaps more than static or dynamic 

methods alone. The variance of the estimated total can be estimated using a bootstrap 
procedure. 

However, if we need to make online imputation on very large datasets, the dynamic 

imputation and so the combined one can be very long (because each curve is treated 
separately) and it may be reasonable to only use static imputation if we only want to 

work at an aggregated level. 
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