Anderson-Darling type goodness-of-fit statistic based on a multifold integrated empirical distribution function

Satoshi Kuriki*
The Institute of Statistical Mathematics, Tokyo, Japan kuriki@ism.ac.jp

Hsien-Kuei Hwang
Institute of Statistical Science, Academia Sinica, Taipei, R.O.C.
hkhwang@stat.sinica.edu.tw

An Anderson-Darling type goodness-of-fit statistic constructed from multifold integrated empirical distribution function is proposed. The proposed statistic is of an integral form whose integrand is a standardized square of \(m \)-fold integrated empirical distribution function. The empirical distribution functions is adjusted in advance so that it does not contain the components of \(m \)-th or lower degree polynomials. The proposed statistic is a natural extension of the goodness-of-fit statistic by Anderson and Darling (1952, AMS), which corresponds to the case \(m = 0 \). When \(m = 1 \), the proposed statistic has much statistical power to detect the discrepancy of dispersion of distribution. The Karhunen-Loève expansion of the limiting integrand process is obtained with Legendre eigenfunctions, and the limiting distribution of the proposed statistic is proved to be a weighted sum of chi-square random variables with the weights \(1/(k(k + 1) \cdots (k + 2m + 1)) \), \(k = 1, 2, \ldots \). The explicit form of the Laplace transform of the limiting distribution without infinite product is derived. The relationship to a boundary-value problem is pointed out. Finally, it is mentioned that the similar type of extension is possible to Watson’s (1961, Biometrika) statistic for testing uniformity of directional data.

Keywords: Boundary-value problem, Directional data, Karhunen-Loève expansion, Laplace transform, Legendre polynomial.