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Abstract

An Anderson-Darling type goodness-of-fit statistic constructed from
multifold integrated empirical distribution function is proposed. The
proposed statistic is of an integral form whose integrand is a standard-
ized square of m-fold integrated empirical distribution function. The
empirical distribution functions is adjusted in advance so that it does
not contain the components of m-th or lower degree polynomials. The
proposed statistic is a natural extension of the goodness-of-fit statistic
by Anderson and Darling (1952, AMS ), which corresponds to the case
m = 0. Whenm = 1, the proposed statistic has much statistical power
to detect the discrepancy of dispersion of distribution. The Karhunen-
Loève expansion of the limiting integrand process is obtained with
Legendre eigenfunctions, and the limiting distribution of the proposed
statistic is proved to be a weighted sum of chi-square random variables
with the weights 1/{k(k+1) · · · (k+2m+1)}, k = 1, 2, . . .. The explicit
form of the Laplace transform of the limiting distribution without infi-
nite product is derived. The relationship to a boundary-value problem
is pointed out. Finally, it is mentioned that the similar type of ex-
tension is possible to Watson’s (1961, Biometrika) statistic for testing
uniformity of directional data.

Keywords: Boundary-value problem, Directional data, Karhunen-Lòeve
expansion, Laplace transform, Legendre polynomial.
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1. Anderson-Darling statistic and its extension

Let X1, . . . , Xn be an i.i.d. sequence from the distribution F (the cu-
mulative distribution function, cdf). We consider a goodness-of-fit test for
testing H0 : F = G against H1 : F ̸= G, where G is a given cdf. When
the distribution is continuous, we can let G(x) = x (i.e., Unif(0, 1)) with-
out loss of generality. Let Fn(x) = n−1

∑n
i=1 1l(Xi ≤ x) be the empirical

distribution function. Test statistics are defined as measures of discrepancy
between Fn(x) and G(x) = x. Various statistics have been proposed. Among
them, one of the most popular statistics is the one proposed by Anderson
and Darling (1952).

The Anderson-Darling statistic is given as

An =

∫ 1

0

Bn(x)
2

x(1− x)
dx, where Bn(x) =

√
n(Fn(x)− x). (1)

Here,

Bn(x) =
√
n

∫ 1

0

h(0)(t;x)dFn(t), h(0)(t; x) = 1l(t ≤ x)− x

is the inner product of a “template” h(0)(·; x) (step function) and dFn(·) “em-
pirical density function”. As an extension to the Anderson-Darling statistic,
we propose a new class of test statistics by replacing h(0)(·; x) with different
types of “templates”.

Note first that
∫ 1

0
h(0)(t;x) · 1 dt = 0. Let h(1)(·; x) be a continuous and

piecewise linear function with a break point at x such that
∫ 1

0
h(1)(t;x) · (at+

b) dt = 0, ∀a, b. Let h(2)(·; x) be a C1 and piecewise quadratic function with

a break point at x such that
∫ 1

0
h(2)(t;x) · (at2 + bt + c) dt = 0, ∀a, b, c. In

general, let h(m)(t;x) be of Cm−1 and a piecewise polynomial of degree m
with a break point at x such that∫ 1

0
h(m)(t;x) · (∀ polynomial of degree m) dt = 0.

Such a function is concretely constructed as

h(m)(t;x) =
1

m!
(x− t)m1l(t ≤ x)−

m∑
k=0

∫ x

0

1

m!
(x− u)mLk(u)du× Lk(t),

(2)
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Figure 1: Templates h(0)(·;x), h(1)(·;x) and h(2)(·; x).

where Lk(·) is the normalized Legendre polynomial of degree k on (0, 1) such

that degLk(x) = k,
∫ 1

0
Lk(x)Ll(x)dx = δkl (Figure 1).

Using this template function, we propose an extension of (1) as

A(m)
n =

∫ 1

0

B
(m)
n (x)2

{x(1− x)}m+1
dx, where B(m)

n (x) =
√
n

∫ 1

0

h(m)(t; x)dFn(t).

Note that B
(m)
n (x) is rewritten as B

(m)
n (x) =

∫ 1

0
h(m)(t; x)dBn(t). B

(m)
n (x) is

constructed from m-fold integrals of empirical distribution function Fn. A
(0)
n

is the original Anderson-Darling statistic.

Remark 1 The idea of use of the function h(m)(·;x) (m = 0, 1) is due to
Hirotsu (1986). In the one-way ANOVA model, he proposed two test statistics
χ∗2 and χ†2 for testing “the equality of means” against “the monotonicity of
mean profile”, and for testing “the monotonicity of mean profile” against
“the convexity of mean profile”, respectively. These two are discrete analogs
to A

(0)
n and A

(1)
n .

2. Limiting null distribution

To state results on distributions, we prepare several notations. Let

L
(m)
k (x) = (−1)m

√
(k −m)!

(k +m)!
{x(1− x)}m/2

( d

dx

)m

Lk(x)

be the normalized associated Legendre functions on (0, 1). For each m,{
L
(m)
k (·)

}
k=m,m+1,...

forms an ONB. Let W (·) be the Winer process on [0, 1].

Let B(x) = W (x)− xW (1) be the Brownian bridge.
The following lemma follows from a weak convergence argument in L2

(Section 1.8 and Example 1.8.6 of van der Vaart and Wellner (1961)). Let µ
be any finite measure on (0, 1).
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Lemma 1 As n → ∞, B
(m)
n (·)→d B(m)(·) in L2(µ), where

B(m)(x) =

∫ 1

0

h(m)(t; x)dB(t), and

A(m)
n =

∫ 1

0

B
(m)
n (x)2

{x(1− x)}m+1
dx

d→ A(m) :=

∫ 1

0

B(m)(x)2

{x(1− x)}m+1
dx.

Theorem 1 (Karhunen-Loève expansion)

B(m)(x)

{x(1− x)}(m+1)/2
=

∞∑
k=m+1

√
(k −m− 1)!

(k +m+ 1)!
L

(m+1)
k (x) ξk, (3)

where ξk =

∫ 1

0

Lk(t)dB(t), i.i.d. N(0, 1).

The convergence is uniformly in x with probability one.

By preparing a differential equation that the Legendre polynomials sat-
isfy, the expansion (3) is derived with formal manipulations. This manipu-
lation is validated by Mercer’s theorem and continuity of sample path (The-
orem 3.8 of Adler (1990)).

Corollary 1 (Limiting null distribution of A
(m)
n )

A(m) =
∞∑

k=m+1

(k −m− 1)!

(k +m+ 1)!
ξ2k, ξ2k ∼ χ2(1) i.i.d. (4)

3. Laplace transform

The Laplace transform (moment generating function) ofA(m) =
∑∞

k=1 λ
−1
k ξ2k,

λk = k(k + 1) · · · (k + 2m+ 1), is easily given by

E
[
e−sA(m)]

=
∞∏
k=1

(
1− 2s

λk

)− 1
2

.

However, the infinite product is not convenient for further analyses such as
analyzing tail behavior or numerical calculations. Here, we provide a more
neat expression.
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Theorem 2 Let xj(s) (j = 0, 1, . . . , 2m+1) be the solution of x(x+1) · · · (x+
2m+ 1)− 2s = 0. Then

E
[
e−sA(m)]

=
2m+1∏
j=0

(
Γ(1− xj(s))

j!

) 1
2

.

When m = 0, λk = k(k + 1), and E
[
e−sA(0)]

=
√

2πs/(− cos π
2

√
1 + 8s)

(Anderson and Darling, 1952). When m = 1, λk = k(k + 1)(k + 2)(k + 3),
and

E
[
e−sA(1)]

=
πs√

3 cos(π
2

√
5− 4

√
1 + 2s) cos(π

2

√
5 + 4

√
1 + 2s)

.

When m = 2, λk = k(k + 1)(k + 2)(k + 3)(k + 4)(k + 5), and

E
[
e−sA(2)]

=
(πs)3/2√

−4320 cos(π
√
η1) cosh(π

√
η2) cosh(π

√
η3)

,

where η1 =
1

12η

(
4η2 + 35η + 112

)
, η2 =

1
12η

(
4e−πi/3η2 − 35η + 112eπi/3

)
, η3 =

1
12η

(
4eπi/3η2−35η+112e−πi/3

)
with η =

3
√
27s+ 80 + 3

√
81s2 + 480s− 1728.

4. Statistical power

By following the proof of Theorem 1, we have the sample counterpart of
the KL-expansion (3):

B
(m)
n (x)

{x(1− x)}(m+1)/2
=

∑
k≥m+1

√
(k −m− 1)!

(k +m+ 1)!
L

(m+1)
k (x) ξ̂k,

where ξ̂k =

∫ 1

0

Lk(x)dBn(x) =
1√
n

n∑
i=1

Lk(Xi).

The sample counterpart of (4) in Corollary 1 is

A(m)
n =

∞∑
k=m+1

(k −m− 1)!

(k +m+ 1)!
ξ̂k

2.

First two components of ξ̂k’s are ξ̂1 =
√
12nm1 and ξ̂2 = 6

√
5n× (m2−1/12)

where mk = n−1
∑n

i=1(Xi− 1/2)k. From this observation, we see that A
(0)
n =
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ξ̂21/2+ · · · has much power for mean-shift alternative, and A
(1)
n = ξ̂22/24+ · · ·

has much power for dispersion-change alternative.

5. Summary and supplements

We have proposed a class of goodness-of-test statistics A
(m)
n (m = 0, 1, . . .)

based on m-fold integrated empirical distribution function as an extension
to the Anderson-Darling statistic. The limiting null distribution A(m) is
explicitly derived as weighted infinite sums of chi-square random variables
(without solving eigenvalue problems). Using a newly proved theorem, we
provide Laplace transforms of A(m) for m = 0, 1, 2 without using infinite
product. The statistic A

(0)
n has much power in direction to mean-shift, and

the statistic A
(1)
n has much power in direction to dispersion-change.

Similar extensions to Watson’s (1961) statistic based on m-fold integrals
of Fn is possible (see Henze and Nikitin (2002) when m = 1). The template
function h(m)(·;x) in (2) is regarded as a Green function of a boundary-value
problem (see Chang and Ha (2001) for the Watson statistic).

The authors thank Yoichi Nishiyama for his valuable comments.
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