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Abstract

A random sequence having segments being the homogeneous Markov processes is registered.
Each segment has his own transition probability law and the length of the segment is unknown
and random. The transition probabilities of each process are known and a priori distribution
of the disorder moment is given. The former research on such problem has been devoted to
various questions concerning the distribution changes when more than one homogeneous segment
is expected. The detection of the disorder rarely is precise. The decision maker accepts some
deviation in estimation of the disorder moment. In the models taken into account the aim is to
indicate the change point with fixed, bounded error with maximal probability. The case with
various precision for over and under estimation of this point is analysed. The case when the
disorder does not appears with positive probability is also included. The observed sequence, when
the change point is known, has the Markovian properties. The results insignificantly extends range
of application, explain the structure of optimal detector in various circumstances and shows new
details of the solution construction. The motivation for this investigation is the modelling of the
attacks in the node of networks. The objectives is to detect one of the attack immediately or in
very short time before or after it appearance with highest probability. The problem is reformulated
to optimal stopping of the observed sequences. The detailed analysis of the problem is presented
to show the form of optimal decision function.
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1. Introduction

Suppose that the process X = {Xn, n ∈ N}, N = {0, 1, 2, . . .}, is observed se-
quentially. It is obtained from Markov processes by switching between them at a
random moment θ in such a way that the process after θ starts from the state
Xθ−1. It means that the state at moment n ∈ N has conditional distribution given
the state at moment n− 1, where the formulae describing these distributions have
the different form: one for n < θ and another for n ≥ θ. Our objective is to de-
tect the moment θ based on observation of X. There are some papers devoted to
the discrete case of such disorder detection which generalize in various directions
the basic problem stated by Shiryaev (1961) (see e.g. Bojdecki (1979), Yoshida
(1983)).

Such model of data appears in many practical problems of the quality control
(see Shewhart (1931) and in the collection of the papers Basseville and Benveniste
(1986)), traffic anomalies in networks (see Tartakovsky et al. (2006)), epidemiology
models (see Baron (2004)). The aim is to recognize the moment of the change over
the one probabilistic characteristics to another of the phenomenon.

Typically, the disorder problem is limited to the case of switching between
sequences of independent random variables (see Bojdecki (1979)). Some develop-
ments of the basic model can be found in Yakir (1994) where the optimal detection
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rule of the switching moment has been obtained when the finite state-space Markov
chains is disordered. Moustakides (1998) formulates conditions which help to re-
duce the problem of the quickest detection for dependent sequences before and
after the change to the case for independent random variables. Our result is a gen-
eralization of the results obtained by Bojdecki (1979) and Sarnowski and Szajowski
(2011). It admits Markovian dependence structure for switched sequences (with
possibly uncountable state-space). We obtain an optimal rule under probability
maximizing criterion.

Formulation of the problem can be found in Section 2. The main result is pre-
sented in Section 3.

2. Formulation of the problem

Let (Ω,F ,P) be a probability space which supports sequence of observable random
variables {Xn}n∈N generating filtration Fn = σ(X0, X1, ..., Xn). Random variables
Xn take values in (E,B), where E is a subset of R. Space (Ω,F ,P) supports also
unobservable (hence not measurable with respect to Fn) random variable θ which
has the geometric distribution:

P(θ = j) = πI{j=0} + (1− π)pj−1qI{j≥1}, (2.1)

where q = 1− p, π ∈ (0, 1), j = 1, 2, . . ..
We introduce in (Ω,F ,P) also two time homogeneous and independent Markov

processes {X0
n}n∈N and {X1

n}n∈N taking values in (E,B) and assumed to be inde-
pendent of θ. Moreover, it is assumed that {X0

n}n∈N and {X1
n}n∈N have transition

densities with respect to a σ-finite measure µ, i.e., for i = 0, 1 and B ∈ B

Pi
x(Xi

1 ∈ B) = P(Xi
1 ∈ B|Xi

0 = x) =

∫
B
f ix(y)µ(dy) =

∫
B
µx(dy). (2.2)

Random processes {Xn}, {X0
n}, {X1

n} and random variable θ are connected via
the rule: conditionally on θ = k

Xn =

{
X0
n, if k > n,

X1
n+1−k, if k ≤ n,

where {X1
n} is started from X0

k−1 (but is otherwise independent of X0).
Let us introduce the following notation:

xk,n = (xk, xk+1, . . . , xn−1, xn), k ≤ n,

Lm(xk,n) =
n−m∏
r=k+1

f0xr−1
(xr)

n∏
r=n−m+1

f1xr−1
(xr),

Ak,n = ×ni=kAi = Ak ×Ak+1 × . . .×An, Ai ∈ B

where the convention
∏j2
i=j1

xi = 1 for j1 > j2 is used.
Let us now define functions S·(·) and G·(·, ·)

Sn(x0,n)=πLn(x0,n) + π̄

(
n∑
i=1

pi−1qLn−i+1(x0,n) + pnL0(x0,n)

)
,(2.3)

Gl+1(xn−l−1,n, α)=αLl+1(xn−l−1,n) + (1− α) (2.4)

×

(
l∑

i=0

pl−iqLi+1(xn−l−1,n) + pl+1L0(xn−l−1,n)

)
.
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where x0, x1, . . . , xn ∈ En+1, α ∈ [0, 1], 0 ≤ n− l − 1 < n.
The function S(x0,n) stands for the joint density of the vector X0,n. For any

D0,n = {ω : X0,n ∈ B0,n, Bi ∈ B} and any x ∈ E we have:

Px(D0,n) = P(D0,n|X0 = x)=

∫
B0,n

S(x0,n)µ(dx0,n)

The meaning of the function Gn−k+1(xk,n, α) will be clear in the sequel.
Roughly speaking our model assumes that the process {Xn} is obtained by

switching at the random and unknown instant θ between two Markov processes
{X0

n} and {X1
n}. It means that the first observation Xθ after the change depends

on the previous sample Xθ−1 through the transition pdf f1Xθ−1
(Xθ). For any fixed

d1, d2 ∈ {0, 1, 2, . . .} (the problem Dd1d2) we are looking for the stopping time
τ∗ ∈ T such that

Px(−d1 ≤ θ − τ∗ ≤ d2) = sup
τ∈SX

Px(−d1 ≤ θ − τ ≤ d2) (2.5)

where SX denotes the set of all stopping times with respect to the filtration
{Fn}n∈N. Using parameters di, i = 1, 2, we control the precision level of detection.
The problem Ddd, i.e. the case d1 = d2 = d, when π = 0 has been studied in
Sarnowski and Szajowski (2011).

3. Solution of the problem

Let us denote:

Z(d1,d2)
n =Px(−d1 ≤ θ − n ≤ d2 | Fn), n = 0, 1, 2, . . .,

V (d1,d2)
n = ess sup

{τ∈SX , τ≥n}
Px(−d1 ≤ θ − τ ≤ d2 | Fn), n = 0, 1, 2, . . .,

τ0=inf{n : Z(d1,d2)
n = V (d1,d2)

n } (3.1)

Notice that, if Z
(d1,d2)
∞ = 0, then Z

(d1,d2)
τ = Px(−d1 ≤ θ−τ ≤ d2 | Fτ ) for τ ∈ SX .

Since Fn ⊆ Fτ (when n ≤ τ) we have

V (d1,d2)
n =ess sup

τ≥n
Px(−d1 ≤ θ − τ ≤ d2 | Fn) = ess sup

τ≥n
Ex(Z(d1,d2)

τ | Fn).

The following lemma (see Bojdecki (1979), Sarnowski and Szajowski (2011)) en-
sures existence of the solution

Lemma 3.2. The stopping time τ0 defined by formula (3.1) is the solution of
problem (2.5).

By the following lemma we can limit the class of possible stopping rules to
SX
d2+1 i.e. stopping times equal at least d2 + 1. Then rule τ̃ = max(τ, d1 + 1) is at

least as good as τ .
For further considerations let us define the posterior process:

Π0=π,

Πn=Px (θ ≤ n | Fn) , n = 1, 2, . . .

which is designed as information about the distribution of the disorder instant θ.
Next lemma transforms the payoff function to the more convenient form.

Proceedings 59th ISI World Statistics Congress, 25-30 August 2013, Hong Kong (Session CPS018) p.3797



Lemma 3.3. Let

h(x0,d1+1, α) =

(
1− pd2 + q

d1∑
m=0

Lm+1(x0,d1+1)

pmL0(x0,d1+1)

)
(1− α), (3.4)

where x0, . . . , xd1+1 ∈ E, α ∈ (0, 1), then

Px(−d1 ≤ θ − n ≤ d2) = Ex
[
h(Xn−1−d1,n,Πn)

]
.

Proof. We rewrite the initial criterion as the expectation

Px(−d1 ≤ θ − n ≤ d2)=Ex [Px(−d1 ≤ θ − n ≤ d2 | Fn)]

=Ex [Px(θ ≤ n+ d2 | Fn)−Px(θ ≤ n− d1 − 1 | Fn)]

The probabilities under the expectation can be transformed to the convenient form
using the lemmata A1 and A4 of Sarnowski and Szajowski (2011). Next, with the
help of Lemma A5 (ibid) (putting l = d1) we can express Px(θ ≤ n+ d2 | Fn) in
terms of Πn. Straightforward calculations imply that:

Px(−d1 ≤ θ − n ≤ d2 | Fn) =

(
1− pd2 + q

d1∑
m=0

Lm(Xn−d1−1,n)

pmL0(Xn−d1−1,n)

)
(1−Πn).

This proves the lemma.

Lemma 3.5. The process {ηn}n≥d1+1, where ηn = (Xn−d1−1,n,Πn), forms a ran-
dom Markov function.

Proof. According to Lemma 17 pp. 102–103 in Shiryaev (1978) it is enough to
show that ηn+1 is a function of the previous stage ηn, the variable Xn+1 and that
conditional distribution of Xn+1 given Fn is a function of ηn. Let us consider, for
x0, . . . , xd1+2 ∈ E, α ∈ (0, 1), a function

ϕ(x0,d1+1, α, xd1+2) =

(
x1,d1+2,

f1xd1+1
(xd1+2)(q + pα)

G(xd1+1,d1+2, α)

)
We will show that ηn+1 = ϕ(ηn, Xn+1). Notice that we get (see Lemma 5 in
Sarnowski and Szajowski (2011) (l = 0))

Πn+1 =
f1Xn(Xn+1)(q + pΠn)

G(Xn,n+1,Πn)
. (3.6)

Hence

ϕ(ηn, Xn+1)=ϕ(Xn−d1−1,n,Πn, Xn+1) =

(
Xn−d1,n, Xn+1,

f1Xn(Xn+1)(q + pΠn)

G(Xn,n+1,Πn)

)
=
(
Xn−d,n+1,Πn+1

)
= ηn+1.

Define F̂n = σ(θ,X0,n). To see that the conditional distribution of Xn+1 given Fn
is a function of ηn, let us consider the conditional expectation of u(Xn+1) for any
Borel function u : E −→ R given Fn. Having Lemma A1 we get:

Ex(u(Xn+1) | Fn) = Ex (u(Xn+1)(1−Πn+1) | Fn) + Ex (u(Xn+1)Πn+1 | Fn)

=

∫
E
u(y)f0Xn

(y)µ(dy)Px(θ > n+ 1 | Fn) +

∫
E
u(y)f1Xn

(y)µ(dy)Px(θ ≤ n+ 1 | Fn)

=

∫
E
u(y)(p(1−Πn)f0Xn

(y) + (q + pΠn)f1Xn
(y))µ(dy) =

∫
E
u(y)G(Xn, y,Πn)µ(dy)

This is our claim.
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Lemmata 3.3 and 3.5 are crucial for the solution of the posed problem (2.5).
They show that the initial problem can be reduced to the problem of stopping
Markov random function ηn = (Xn−d1−1,n,Πn) with the payoff given by the equa-
tion (3.4). In the consequence we can use tools of the optimal stopping theory for
finding the stopping time τ∗ such that

Ex
[
h(Xτ∗−d1−1,τ∗ ,Πτ∗)

]
= sup

τ∈SXd+1

Ex
[
h(Xτ−d1−1,τ ,Πτ )

]
. (3.7)

To solve the reduced problem (3.7) for any Borel function u : Ed1+2 × [0, 1] −→ R
let us define operators:

Tu(x0,d1+1, α)=Ex

[
u(Xn−d1,n+1,Πn+1) | Xn−1−d1,n

= x0,d1+1,Πn = α
]
,

Qu(x0,d1+1, α)=max{u(x0,d1+1, α),Tu(x0,d1+1, α)}.

By the definition of the operator T and Q we get

Lemma 3.8. For the payoff function h(x0,d1+1, α) characterized by (3.4) and for the
sequence {rk}∞k=0:

r0(x1,d1+1)=p

[
1− pd2 + q

d1∑
m=0

Lm−1(x1,d1+1)

pmL0(x1,d1+1)

]
,

rk(x1,d1+1)=p

∫
E
f0xd1+1

(xd1+2) max

{
1− pd2 + q

d1+1∑
m=1

Lm(x1,d1+2)

pmL0(x1,d1+2)
; rk−1(x2,d1+2)

}
µ(dxd1+2),

the following formulae hold:

Qkh1(x1,d1+2, α)=(1− α) max

{
1− pd2 + q

d1+1∑
m=1

Lm(x1,d1+2)

pmL0(x1,d1+2)
; rk−1(x2,d1+2)

}
, k ≥ 1,

T Qkh1(x1,d1+2, α)=(1− α)rk(x2,d1+2), k ≥ 0.

The following theorem is the main result of the paper.

Theorem 3.9. (a) The solution of the problem (2.5) is given by:

τ∗ = inf{n ≥ d1 + 1 : 1− pd2 + q

d1+1∑
m=1

Lm(Xn−d1−1,n)

pmL0(Xn−d1−1,n)
≥ r∗(Xn−d1,n)} (3.10)

where r∗(Xn−d,n) = limk−→∞ rk(Xn−d,n).
(b) The value of the problem, i.e. the maximal probability for (2.5) given X0 = x, is

equal to

Px(−d1 ≤ θ − τ∗ ≤ d2)=pd1+1

∫
Ed1+1

max

{
1− pd2 + q

d1+1∑
m=1

Lm(x, x1,d1+1)

pmL0(x, x1,d1+1)
; r∗(x1,d1+1)

}
×L0(x, x1,d1+1)µ(dx1, . . . , dxd1+1).
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4. Final remarks

The presented analysis of the problem when the acceptable error for stopping before or
after the disorder allows to see which protection is more difficult to control. When we
admit that it is possible sequence of observation without disorder it is interesting question
how to detect not only that we observe the second kind of data but that there were no
data of the first kind. It can be verified by standard testing procedure when we stop very
early (τ ≤ min{d1, d2}).
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