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Abstract

Identifying dependence between variables has always been an interesting
question for researchers. Understanding the dependencies provide insight in
many fields of applications including biostatistics, social science, etc. One of
the classical approaches to target the problem is the use of a graphical model:
A graph G = (V,E) with each vertex v ∈ V representing a variable and edge
e ∈ E governing the conditional dependency between the connected vertices.
Researches in Graphical Model are almost exclusively based on Gaussian as-
sumption or more general, Gaussian copula: Prior choices of a single precision
matrix Σ−1 including Wishart for complete graphs, Hyper Wishart for de-
composable graphs and G-Wishart in general are developed over past decades.
Nevertheless, using a single covariance structure can still be restrictive for cer-
tain applications. In this paper, we extend existing approaches by considering
a mixture of Gaussian copula in graphical models with the use of a set of latent
indicator variables. Bayesian inference of the indicators and precision matri-
ces will be discussed. Simulation study will also be conducted to examine the
efficiency and accuracy of our model.

1 Introduction

Conditional dependence among variables of a dataset X can be modeled with the
use of graph G = (V,E) (Edwards, 2000). Presence of edge e ∈ E between two
variables Xi, Xj , which corresponds to the vertices vi, vj ∈ V in graph G respec-
tively, indicates conditional dependence between Xi and Xj . The joint density of
X is then constructed given the dependence structure represented by the graph G.
Traditionally graphical model assumes the joint density to be Gaussian with preci-
sion matrix Σ−1 constrainted by the graph G. This is called the Gaussian graphical
model (Lauritzen, 1996). Under normal assumption, conditional independence be-
tween Xi and Xj is zero conditional correlation between the two, reflected by the
(i, j)−th entry of Σ−1 being zero. Dobra and Lenkoski (2011) generalizes the model
using Gaussian copula, which assumes the underlying dependence is Gaussian and
marginals can be modeled with other density family.

In estimation of the graph G and the dependence of data, Bayesian framework can be
readily applied. Assuming the data follows a Gaussian distribution, the traditional
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choice of conjugate prior of precision matrix is Inverse Wishart distribution. Dawid
and Lauritzen (1993) develops the Hyper Inverse Wishart distribution HIW (D, δ),
which is the conjugate prior of Σ−1 given the constraints of the graph G:

p(Σ−1|G) =
1

IG(δ,D)
(det Σ−1)(δ−2)/2 exp{−1

2
tr(Σ−1, D)} (1.0.1)

where IG(δ,D) is the normalizing constant, D is a positive definite matrix and δ
is degree of freedom. The posterior distribution of Σ−1 is HIW (D +XTX, δ + n).
The normalizing constant IG is an integral which cannot be calculated exactly for
most cases, numerical approximation is normally required. With the additional
constraint of the graph being decomposable, the posterior can be estimated with
Gibbs Sampler on a perfect sequence of subgraph, eliminating the need of numerical
approximation (Letac and Massam, 2007). For non-decomposable graph, Roverato
(2002) developed the algorithm in estimating the posterior.

Nevertheless, usage of Gaussian copula in graphical model still limits the variable
dependence governed by a single precision matrix. We propose using a mixture of
Gaussian copulae, which further generalizes the Gaussian dependence assumption.
In section 2 we will formulate the proposed mixture model under a hierarchical
Bayesian model with estimation procedure. In section 3 we will provide a short
discussion on the model and future work.

2 Methodology

The main methodology can be divided into two parts: Estimation of the Gaussian
copula mixture and the precision matrix for each component. Similar to ordinary
Gaussian mixture (Diebolt and Robert, 1994), we construct the following hierarchi-
cal model for the mixture parameter:

α : hyperparameter

p|α ∼ Dirichlet(α)

z|p ∼ Categorical(p)

With the use of hidden variable z, joint density of X can be represented as
f(X|{z,Σ1,Σ2, . . . ,ΣK}) =

∑K
i=1 zici(X|Σi) with ci being the i-th Gaussian cop-

ula component. Under this hierarchical model, Gibbs Sampler can be employed to
sample the mixture component:

1. Sample p(h+1) from Dirichet distribution

2. Sample z(h+1) given p(h+1)

3. Based on the hidden variable z(h+1), observations are partitioned into K

4. Data partitioned into the i-th set will be used in estimating the precision

matrix Σ
(−1)
i
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The next step is to sample the precision matrix according to the graph Gi for each
mixture component. Assuming the graph Gi is known, given the hidden variable z,
the sampling follows similarly in Gaussian graphical model

1. Given all observations xn ∈ X of the i-th mixture component, transform the
variables by their marginals: un = F (xn)

2. U |Σ−1
i ∼ N(0,Σi)

3. Given the constraint of graph Gi, sample Σ−1
i from the Hyper Inverse Wishart

distribution

4. Sample the transition of Gi into a new graph based on the sampled Σ−1
i

Assuming the graph Gi is constrained to be decomposable, we can efficiently sample
the graphical component similarly as in paper by Wang and Li (2012).

3 Conclusion

The development of mixture of Gaussian copula graphical model extends the range of
application of graphical model in dependence modeling. A full Bayesian framework
can be employed in estimation of the mixture components and the dependence struc-
ture of the graph. In the future, we are looking to conduct simulation study on the
methodology. Discussion on how the number of mixture components K can be cho-
sen, the identifiability of the mixture model and graph transition will be conducted
in the future to ensure effective implementation of the suggested methodology.
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