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Abstract

Excess zeros and overdispersion are commonly encountered phenomena that limit
the use of traditional Poisson regression models for modeling count data. The
focus of this paper is on modeling count data in the case that a population has
excess zero counts and also consists of several sub-populations in the non-zero
counts. The proposed zero-inflated Poisson regression mixture model accounts for
both excess zeros and heterogeneity. The performance of parameter estimation
for the proposed model is evaluated through simulation studies.
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1. Introduction

Count data are common in many research areas (sociology, engineering, medi-
cal studies and others), which are usually modeled using the Poisson distribution.
However, in various applications dispersion of the variable of interest exceeds dis-
persion. This phenomenon, called overdispersion, often results from unobserved
heterogeneity, i.e., the sample of responses is drawn from a population consisting
of several sub-populations. Mixtures of Poisson distributions have been widely
used to deal with this problem. A finite Poisson mixture model with K com-
ponents explains the population by giving weights πk to sub-populations with
means λk, k = 1, · · · ,K. This approach also provides a natural framework to
classify observations into the components of the mixture model. The finite mix-
tures of the Poisson regression model with constant weight parameters have been
developed by Brännaäs and Rosenqvist (1994), Wedel et al. (1993), Wang et al.
(1996) and Alfò and Trovato (2004). Wang et al. (1998) discuss the finite mixed
Poisson regression models that incorporate covariates in the weight parameters.

In addition, the count variable of interest may contain more zeros than what
is to be expected under a Poisson model which is commonly observed in many
applications. A popular approach to model excess zeros is to use a zero-inflated
Poisson (ZIP) regression model discussed by Lambert (1992). The ZIP distribu-
tion is a mixture of a Poisson distribution and a degenerate distribution at zero.
This regression setting allows for covariates in both the Poisson mean and weight
parameters. Böhning (1998) and Ridout et al. (1998) provide reviews of related
literature and present examples from a wide variety of disciplines.

If some overdispersion related to the counts may remain even after model-
ing excess zeros, a zero-inflated negative binomial (ZINB) model can be a good
alternative. However, if a population has excess zero counts and also consists
of several sub-populations in the non-zero counts, the ZINB model may not be
sufficient for such data. The focus of this paper is on modeling heterogeneous
count data with excess zero counts.
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The paper is organized as follows. We describe the zero-inflated Poisson
regression mixture model in Section 2. Several simulation studies to assess the
performance and sensitivity of parameter estimation are presented in Section 3.
Finally, we conclude by discussing the findings in Section 4.

2. ZIP regression mixture model

A popular approach to analyze count data with excess zeros is to use a zero-
inflated Poisson (ZIP) regression model. If the non-zero counts consist of several
sub-populations (unobserved heterogeneity), a single component of the ZIP re-
gression model may be insufficient to describe the non-zero counts. We propose a
model that accounts for the excess zeros and the heterogeneous non-zero counts
simultaneously.

Suppose a count response variable Y follows a ZIP mixture distribution:

P (Y = y) =

{
π1 + π2e

−λ2 + · · ·+ πKe
−λK , y = 0

π2
e−λ2λy2
y! + · · ·+ πK

e−λKλyK
y! , y > 0

(1)

where K is the number of mixing components, λk is the mean and πk is the mixing
weight of component k such that 0 < πk < 1, k = 1, · · · ,K, and

∑K
k=1 πk = 1.

The weight π1 determines the proportion of excess zeros compared with an ordi-
nary Poisson mixture model. If K is equal to two, the ZIP mixture distribution
in Eq. (1) is reduced to the ZIP distribution (Lambert (1992)).

To incorporate covariate information, we model the means {λk}Kk=1 and the
mixing weights {πk}Kk=1 using the following regression models that parameterize
log(λk) and the multinomial logit transform of πk as linear functions of covariates:

log(λik) = xiβk, i = 1, · · · , N, k = 2, · · · ,K (2)

πik(wi, γ) =
exp(wiγk)

1 +
∑K

k=2 exp(wiγk)
, πi1(wi, γ) = 1−

K∑
k=2

πik(wi, γ), (3)

where xi = (xi1, · · · , xip) and wi = (wi1, · · · , wiq) are 1× p and 1× q row vectors
of covariates (including an intercept), βk and γk are the corresponding p× 1 and
q × 1 vectors of regression coefficients for the kth component, respectively. Note
that the mixing probability of the first component πi1(wi, γ) is the probability of
excess zeros and is taken as the baseline for the multinomial logit. That is, the
logit of the other components relative to πi1 is log(πik/πi1) = wiγk, k = 2, · · · ,K.

The generalized ZIP (GZIP) regression mixture model can be formulated as
follows:

P (Y = yi) = πi1(wi, γ)I(yi=0) +

K∑
k=2

πik(wi, γ)Pois(yi | xi, βk), (4)

where I(·) is the indicator function of the argument. A special case of the above
model will be obtained if the mixing weights πik are assumed to be constant
functions of the covariates wi. In that case, the ZIP with fixed weights (FZIP)
regression mixture model can be formulated as follows:

P (Y = yi) = π1I(yi=0) +

K∑
k=2

πkPois(yi | xi, βk). (5)
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If both πik and λik are constant functions, the GZIP mixture model reduces to
the standard Poisson mixture model denoted by

P (Y = yi) =

K∑
k=1

πkPois(yi | λk). (6)

Note that the first component (a degenerate distribution with all mass π1 at
yi = 0) in Eq. (4) can be regarded as a Poisson distribution with mean λ1 = 0
because of Pois(yi = 0 | λ1 = 0) = 1 and Pois(yi 6= 0 | λ1 = 0) = 0.

3. Results

A simulation study is conducted for evaluating the performance of the pro-
posed EM estimation algorithm. We generate N samples from the following GZIP
model with three components.

πi1(wi, γ)I(yi=0) +πi2(wi, γ)Pois(yi | λ2(xi, β2)) +πi3(wi, γ)Pois(yi | λ3(xi, β3)).

The log-link for the Poisson mean λik and the multinomial logit-link for weight
πik used are as follows:{

log(λ2(xi, β2)) = β20 + β21xi
log(λ3(xi, β3)) = β30 + β31xi

and

{
log(πi2/πi1) = γ20 + γ21wi

log(πi3/πi1) = γ30 + γ31wi,

where xi and wi are generated from Uniform(0,1), respectively. True values for
the Poisson regression coefficients are assumed as β′2 = (β20, β21) = (1.2,−0.4),
β′3 = (β30, β31) = (1.5, 0.8). To consider zero-inflation among the mixing weights,
we highly set the probability of excess zeros as γ′2 = (γ20, γ21) = (−1.2, 1.4),
γ′3 = (γ30, γ31) = (−1.3, 0.8) which can be reparameterized as πk by Eq. (3). As
a result, π1 ≈ 0.497, π2 ≈ 0.301, π3 ≈ 0.202 are expected on average.

To generate samples from the above model, for each subject i (1, · · · , N), a
random number u is generated from Uniform(0,1). If u is less than πi1, Yi takes
the value 0, or if u is between πi1 and πi1+πi2 then Yi is a draw from Poisson(λi2),
otherwise Yi is generated from Poisson(λi3).

The results concerning the evaluation of parameter estimation are presented
in Table 1. The results are based on 1000 replications for each of the three
sample sizes (N = 300, 500, 1000). Bias, mean square error (MSE) and coverage
probability are used to evaluate the estimation performance. Bias is calculated
as the difference between the average estimate and the true value which should
ideally be close to zero. MSE measures the average squared distance from the
estimate and the true value which is a useful measure of overall accuracy of
estimation. Coverage probability is the proportion of times the confidence interval
obtained contains the true value. We consider bootstrapping for computing the
coverage probability of confidence interval because the EM algorithm used in
parameter estimation does not produce standard errors. The following formulas
are used to obtain these measures.

• Bias(θ̂) = 1
r

r∑
j=1

θ̂j − θ,

• MSE(θ̂) = 1
r

r∑
j=1

(θ̂j − θ)2,

• Bootstrap coverage : Proportion of times the 100(1 − α)% bootstrap con-
fidence interval [2θ̂j − θ∗j,1−α/2, 2θ̂j − θ

∗
j,α/2] includes θ for j = 1, · · · , r,
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where θ ∈ Θ = {βk0, βk1, γk0, γk1}3k=2 is the true value for estimate of interest,

r is the number of replications performed, θ̂j is the estimate of interest within
each of the j = 1, · · · , r replication, and θ∗α/2 is the 100(α/2)th percentile of

θ∗ = (θ∗1, · · · , θ∗B), where θ∗b (b = 1, · · · , B) is computed for a bootstrap sample Y ∗i
generated from π̂i1I(yi=0) +

∑3
k=2 π̂ikPois(λ̂ik) and this process is independently

repeated B=1000 times.
The results in Table 1 indicate that the EM algorithm indeed performs well

in estimating the true coefficients. The bias and MSE for all the parameters
decrease as sample size increases from 300 to 1000. Also, the bootstrap coverage
probabilities are closer to the nominal confidence level as sample size increases.

Table 1: Bias, MSE, Coverage probability
N=300 N=500 N=1000

Evaluation criteria θ̂ k = 2 k = 3 k = 2 k = 3 k = 2 k = 3
Bias βk0 -0.001 0.009 0.001 -0.002 0.001 -0.010

βk1 -0.016 -0.008 -0.019 0.006 -0.005 0.011
γk0 0.000 -0.046 -0.010 -0.013 -0.003 -0.011
γk1 0.048 0.003 0.021 -0.025 0.004 0.013

MSE βk0 0.042 0.021 0.023 0.016 0.013 0.008
βk1 0.127 0.045 0.071 0.031 0.038 0.017
γk0 0.138 0.190 0.078 0.097 0.040 0.048
γk1 0.374 0.505 0.196 0.277 0.104 0.131

Bootstrap 99% βk0 0.984 0.994 0.989 0.991 0.995 0.996
Coverage βk1 0.997 0.996 0.993 0.993 0.992 0.994

γk0 0.987 0.990 0.992 0.992 0.990 0.991
γk1 0.999 1.000 0.999 0.998 0.994 0.994

95% βk0 0.964 0.967 0.970 0.963 0.970 0.963
βk1 0.971 0.977 0.974 0.972 0.954 0.964
γk0 0.958 0.969 0.962 0.959 0.960 0.956
γk1 0.986 0.994 0.979 0.977 0.956 0.957

90% βk0 0.935 0.939 0.933 0.922 0.918 0.915
βk1 0.934 0.952 0.926 0.939 0.907 0.917
γk0 0.932 0.933 0.931 0.918 0.913 0.901
γk1 0.952 0.956 0.931 0.935 0.914 0.909

3.1. Sensitivity of the GZIP mixture model

We conduct simulations to examine sensitivity of the GZIP mixture model.
Our first simulation is to examine the performance of the GZIP model for classifi-
cation. We use the same setting as before to generate data from the GZIP mixture
model with three components. A GZIP model with three components is fitted to
the simulated data and used for classifying the data into three groups. We com-
pute the misclassification rate by counting the number of observations classified
into a group that is different from its original group. Results of this simulation
based on 1000 repetitions are presented in Table 2. The overall misclassification
rate is 11.3%. Moreover, it can be seen that the majority of the misclassification
is between groups two and three which is not surprising because the means of
these subgroups in some simulated datasets are close to each other making the
boundary between groups slightly ambiguous (Poisson means λk ≈ (2.7, 6.8) for
k = (2, 3)).

In the second simulation, we examine if the number of mixing components of
the GZIP model can be identified using AIC and BIC model selection criteria. We
generate data from the GZIP mixture with 3-components under the same setting
as above. We now fit four GZIP mixture models with 2, 3, 4 and 5 components.
Table 3 shows the result of model selection using AIC and BIC. We can see
that BIC picks exactly the true model in all the cases but AIC sometimes choses
more components than is necessary. This is consistent with the fact that BIC is
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Table 2: Misclassification for 3-component model
Classified group Misclassification

Real group 1 2 3 rate
1 497 0 0 0.0%
2 22 242 40 20.5%
3 0 50 148 25.4%

Overall misclassification rate 11.3%
Data : GZIP mixture with 3-component,
Model : GZIP mixture with 3-component.

model selection consistent and indicates that it is more suitable for identifying
the number of components.

Table 3: Model selection based on AIC and BIC
GZIP mixture model Correct

k=2 k=3 k=4 k=5 rate
AIC 0 912 81 7 91.2 %
BIC 0 1000 0 0 100.0 %
AIC = -2 log-likelihood + 2 M ,
BIC = -2 log-likelihood + M log(N),
M is the number of estimated parameters,
N is the sample size.

The third experiment is performed to study the impact of using the GZIP
model when the data is generated from a FZIP model that is simpler. The
motivation for conducting this experiment is to see if the estimation of the GZIP
model is less efficient (i.e., larger standard errors) than the FZIP model. A sample
dataset (N=1000) is generated from the FZIP mixture model with 3-components
given by Eq. (5).

True values for the regression coefficients are taken as β′2 = (β20, β21) =
(2.4,−1.8), β′3 = (β30, β31) = (1.2, 0.6) and xi is set at intervals of 0.2, i.e. 0.2 (i =
1, · · · , 100), 0.4 (i = 101, · · · , 200), · · · , 2.0 (i = 901, · · · , 1000). The correspond-
ing weights are set to (π1, π2, π3) = (0.5, 0.3, 0.2). Based on 1000 replications, Ta-
ble 4 shows that the estimates from the FZIP and GZIP mixture models. We can
see that the GZIP model performs as well as the FZIP model for estimation both
in terms of the estimates and their standard errors. The estimated coefficients
for weights in the GZIP model are (γ̂20, γ̂21) = (−0.509, 0.0005), (γ̂30, γ̂31) =
(−0.938, 0.016), which are reparameterized as (π̂1, π̂2, π̂3) = (0.499, 0.301, 0.199)
by a multinomial logit transform.

Table 4: Parameter estimates (standard errors)
Component βk0 βk1 πk

k True FZIP GZIP True FZIP GZIP True FZIP GZIP
1 - - - - - - 0.5 0.500 0.499
2 2.4 2.399 2.398 -1.8 -1.802 -1.799 0.3 0.300 0.301

(0.076) (0.092) (0.107) (0.154)
3 1.2 1.202 1.201 0.6 0.600 0.600 0.2 0.200 0.199

(0.096) (0.099) (0.063) (0.065)
- indicates that the parameter is not estimated from the Poisson model.
Data : FZIP mixture with 3-components
Model : FZIP mixture with 3-components, GZIP mixture with 3-components

4. Conclusions

We have proposed the ZIP regression mixture model for the zero-inflated
heterogeneous count data. Our simulation studies show that the proposed model
works satisfactorily and estimation techniques perform well.
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Alfò, M., Trovato, G., 2004. Semiparametric mixture models for multivariate
count data, with application. The Econometrics J. 7(2), 426-454.
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