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Abstract

Multivariate functional data is defined as an element of a direct sum of Hilbert spaces,
H(p) = H1⊕H2⊕· · ·⊕Hp, where each Hk (k = 1, 2, . . . , p) is a real separable Hilbert space.

In this paper, we consider a Gaussian measures on H(p) as its probability structure. That
is, H(p)-valued Gaussian random variable is defined for a measureable space.

Under the joint Gaussian probability measure, we will discuss the multivariate analysis
just like the classical multivariate analysis. For this purpose, we shall extend the theory of
finite dimensional multivariate normal distribution to H(p)-valued random variables. Using
the properties of H(p)-valued Gaussian measure, it is shown that a concept of regression can
be given by the conditional expectation and the concept of principal components is given by
the use of eigen structure of covariance operator.

Keywords: conditional expectation, direct sum of Hilbert spaces, joint Gaussian measure, prin-
cipal components.

1. Introduction
There have been many studies to date on ”functional data analysis” commencing with the key
book by Ramsay & Silverman ([8],2002). These functional data analysis have brought in many
interested methods or procedures for the analysis of time series data and so on.

As a pioneering work for infinite dimensional multivariate analysis, Rao et al.([9],1963) have
discussed discriminant analysis for two equivalent (not perpendicular) infinite dimensional Gaus-
sian populations.

Main objective of multivariate analysis for the finite dimensional real random variables is an
interpretation of the covariance structure through the several models. In traditional functional
data analysis, the covariance between the pair of random variables is the same as the finite
dimensional case. Then there are no essential differences in the covariance structures between
the finite dimensional case and infinite case for finite samples.

On the other hand, Baker [2] has discussed the cross covariance operator, Rij , from Hj to
Hi. Using this concept, we can define the covariance operator of H(p)-valued random variables
and the joint Gaussian measure.

For multivariate functional data analysis, we discuss the properties of joint Gaussian measure
and the concept of the regression is described by the conditional expectation in the same way
of finite dimensional case.

Multivariate functional data has been discussed also by Berrendero et al. [3], in which they
have discussed principal components. The framework of their discussion is required more general
space than a Hilbert space in this paper. Here we discuss the model of principal components as
an inner product in H(p).

2. Direct Sum Hilbert Space and Gaussian Measure
Let H1,H2, · · · ,Hp be the real separable Hilbert spaces. A direct sum of these Hilbert spaces
is denoted by H(p) = H1 ⊕H2 ⊕ · · · ⊕ Hp. Here, we write the elements of H(p) by the column
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vector forms u = (u1, u2, · · · , up)′, v = (v1, v2, · · · , vp)′, ua, va ∈ Ha, where the notation ”′”
denote the transpose of column vector.

The sum and the scalar multiplication for the elements of H(p) are defined by

u′ + v′ ≡ (u1 + v1, u2 + v2, · · · , up + vp), αu′ ≡ (αu1, αu2, · · · , αup), α ∈ R.

An inner product is defined for the pair of elements u,v ∈ H(p) as follows:

[u,v](p) = ⟨u1, v1⟩1 + ⟨v2, v2⟩2 + · · ·+ ⟨up, vp⟩p,

where ⟨·, ·⟩a is denoted the inner product on Ha. Under these definition, H(p) becomes Hilbert

space. For the element u ∈ H(p) a norm is introduced by ∥u∥(p) =
√

[u,u](p). If the each Hilbert

space Ha has completeness, it will be shown that the Hilbert space H(p) has also completeness.
First we shall consider a real separable Hilbert space H.

Definition 2.1. (Random variable) An H-valued random variable is an H-valued strongly P-
measureable ([6]) function X defined on some probability space (Ω,F ,P).

All integral of H-valued random variable will be Bochner-integrals. For integrable random
variable X, mean value is defined by EX ≡

∫
ΩXdP.

Definition 2.2. (Borel probability measure) The distribution of an H-valued random variable
X is the Borel probability measure µX on H defined by µX(B) ≡ P{X ∈ B}, B ∈ B(H),
where B(H) is Borel σ-algebra of H, which is denoted by Γ ≡ B(H).

Definition 2.3. (Fourier transform) The Fourier transform of random variable X : Ω → H is
denoted by Fourier transform of Borel probability measure µX defined by

µ̂X(u) ≡ E exp(−i⟨X,u⟩) =
∫
H
exp(−i⟨x, u⟩)dµX(x)

Theorem 2.1. (Parthasarathy, 1967[7]) Let X1 and X2 be H-valued random variables whose
Fourier transforms are equal, i.e. µ̂X1(u) = µ̂X2(u) for all u ∈ H. Then X1 and X2 are
identical distributed.

Definition 2.4. (Gaussian random variable) An H-valued random variable X is Gaussian if
the real random variable ⟨X,u⟩ is Gaussian for all u ∈ H. The Borel probability measure
µX is called Gaussian measure on (H,Γ).

Theorem 2.2 (Fernique,1970[5]) Let X be an H-valued Gaussian random variable, there exist
a constant β > 0 such that E exp(β∥X∥2) < ∞.

By the Fernique theorem, it will suffice to show E∥X∥p < ∞ for all 1 ≤ p < ∞. Also X is
considered to be a µX -Bochner integrable. Then for all u ∈ H we can denote ⟨EX,u⟩ = E⟨X,u⟩.
By the Riesz representation theorem, there exist an element such that EX = m ∈ H. We call
m the mean element of X with respect to µX .

Definition 2.5. A bonded operator R : H → H is called (i) positive, if ⟨Ru, u⟩ ≥ 0 for all
u ∈ H; and (ii) symmetric, if ⟨Ru, v⟩ = ⟨Rv, u⟩ for all u, v ∈ H.
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Theorem 2.3 (Parthasarathy,1967[7])For H-valued random variable X, the Borel measure µX

is Gaussian if and only if there exist a positive symmetric operator R on H uniquely and
Fourier transform of µX is given by

µ̂X = E exp(−i⟨X,u⟩) = exp

(
i⟨m,u⟩ − 1

2
⟨Ru, u⟩

)
, u ∈ H (1)

The operator R is called covariance operator of H-valued random variable X.
On the other hand, the Neumann-Schatten product is defined by (f ⊗ g)h ≡ ⟨h, g⟩f for all

h ∈ H. Using this operator, the covariance operator R is described as follows;

⟨Ru, v⟩ =
∫
H
⟨{(x−m)⊗ (x−m)}u, v⟩ dµX(x)

Then we may describe that the covariance operator is given by the expectation of the Neumann-
Schatten product, i.e. E{(X −m)⊗ (X −m)} = R.

Next we shall discuss a joint Gaussian measure on the direct sum Hilbert space H(p) =
H1 ⊕H2 ⊕ · · · ⊕ Hp. Let Γa = B(Ha) be a Borel σ-field on Ha derived from the norm on Ha,
and Γ(p) ≡ Γ1 × Γ2 × · · · × Γp denote the Borel σ-field generated by the measurable rectangles

A1 × A2 × · · · × Ap, Aa ∈ Γa(a = 1, 2, . . . , p). Let X(p) ≡ (X1, X2, · · · , Xp)
′ be a H(p)-valued

random variable and µ(p) be a Borel probability measure on (H(p),Γ(p)). µ(p) will be called a
joint measure of (X1, X2, · · · , Xp).

Since (H(p), [·, ·](p)) is a real separable Hilbert space, we can define a joint Gaussian measure
from the Definition 2.4.

Definition 2.6. (Joint Gaussian random variables) An H(p)-valued random variable
X(p) = (X1, X2, · · · , Xp)

′ is a joint Gaussian if the real random variable [X(p),u](p) is

Gaussian for all u ∈ H(p). The Borel probability measure µ(p) is called a joint Gaussian

measure on (H(p),Γ(p)).

The mean elements of X(p) = (X1, X2, · · · , Xp)
′ is given by m(p) = (m1,m2, · · · ,mp)

′, where
each ma is the mean element of Xa with respect to µa on (Ha,Γ(p)/Γa).

The covariance operator of Xa with respect to µa on (Ha,Γ(p)/Γa) is given by

⟨Raua, va⟩a =

∫
Ha

⟨(xa −ma), ua⟩a⟨(xa −ma), va⟩adµa(xa)

And Baker[2] has discussed the cross-covariance operator of Gaussian measure µab on (Ha ⊕
Hb,Γ(p)/Γa × Γb) which is defined by the operator from Hb to Ha, Rab : Hb → Ha, where

⟨Rabvb, ua⟩a =

∫
Ha⊕Hb

⟨(xa −ma), ua⟩a⟨(xb −mb), vb⟩bdµab(xa, xb).

Then we assume an operator matrix

R(p) ≡


R1 R12 · · · R1p

R21 R2 · · · R2p
...

...
. . .

...
Rp1 Rp2 · · · Rp

 .
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The operator R(p) works just like the matrix operation on the element u ∈ H(p) as follows:

R(p)u =


R1u1 +R12u2 + · · ·+R1pup
R21u1 +R2u2 + · · ·+R2pup

...
Rp1u1 +Rp2u2 + · · ·+Rpup

 ∈ H(p)

Using these notations the covariance operator of X(p) is given by

[R(p)u,v](p) =

∫
H(p)

[(x(p) −m(p)),u](p)[(x(p) −m(p)),v](p)dµ(p)(x(p)), ∀u,v ∈ H(p) (2)

For the pair of elements u,v ∈ H(p), a Neumann-Schatten product (u⊗ v) : H(p) → H(p) is
defined by (u⊗ v)w ≡ [w,v](p)u for all w ∈ H. Then the covariance operator R(p) is denoted
by the expectation of the following Neumann-Schatten product

E{(X(p) −m(p))⊗ (X(p) −m(p))} = R(p).

Since (H(p), [·, ·](p)) is a real separable Hilbert space, we get the following

Theorem 2.4. For H(p)-valued random variable X(p), the Borel measure µ(p) is Gaussian if

and only if there exists a positive symmetric operator R(p) on H(p) and mean element m
uniquely and Fourier transform of µ(p) is given by

µ̂(p) = E exp(−i[X(p),u](p)) = exp

(
i[m(p),u](p) −

1

2
[R(p)u,u](p)

)
, u ∈ H(p) (3)

Theorem 2.5. Let X(p)be a H(p)-valued Gaussian random variable with a mean element m(p)

and a covariance operator R(p). If T is a bounded operator on H(p), then T X(p) is also

H(p)-valued Gaussian random variable with the mean element T m(p) and the covariance

operator T R(p)T ∗, where T ∗is an adjoint operator on H(p).

Definition 2.7. Let Xa (a = 1, 2, . . . , p) be a Ha-valued random variable and µa(wa) be a its
probability measure. If X(p) = (X1, X2, · · · , Xp)

′ is H(p)-valued random variable with
joint probability Borel measure µ(p), then the set of random variables are said to be
mutually independent if

µ̂(p)(w) = µ̂1(w1)µ̂2(w2) · · · µ̂p(wp),

for any w = (w1, w2, · · · , wp)
′ ∈ H(p), where µ̂a(wa) is Fourier transform of µa(wa) and

µ̂(p)(w) is also Fourier transform of µ(p).

We suppose that H(p)-valued random variable X(p) is divided into two groups X(1) ≡
(X1, · · · , Xr)

′ and X(2) ≡ (Xr+1, · · · , Xp)
′ and X(1) and X(2) are also joint probability

Borel measure µ(1) and µ(2), respectively. The set X(1) is said to be independent of the
set X(2) if

µ̂(p)(w) = µ̂(1)(w(1))µ̂(2)(w(2)),

where w(1) = (w1, · · · , wr)
′,w(2) = (wr+1, · · · , wp)

′, w = (w(1),w(2))
′ ∈ H(p), and

µ̂(1), µ̂(2) are Fourier transform of µ(1) and µ(2), respectively.

Proceedings 59th ISI World Statistics Congress, 25-30 August 2013, Hong Kong (Session CPS021) p.3890



Based on this definition, we get the following

Theorem 2.6. Let X(p) = (X1, X2, · · · , Xp)
′ be a H(p)-valued joint Gaussian random variables

with mean elements m(p) = (m1,m2, · · · ,mp)
′ and covariance operator R(p). A necessary

and sufficient condition that one subset of random variables and the subset consisting of
the remaining variables be independent is that each cross-covariance operator of a variable
from one set and a variable from the other set be null operator.

3. Conditional Expectation and Regression
Hereafter we assume that the covariance operators of any Gaussian random variable and joint

Gaussian random variables are invertible, that is, the kernel of covariance operator is always
constructed of a zero element in corresponding Hilbert space.

For the partition of the Gaussian random variable X(p) just like the definition 2.7, we assume
that the mean elements and covariance operator are divided into as follows:

X(p) =

[
X(1)

X(2)

]
, m(p) =

[
m(1)

m(2)

]
, R(p) =

[
R(1)(1) R(1)(2)

R(2)(1) R(2)(2)

]
,

where R(a)(b) ≡ E{(X(a) − m(a)) ⊗ (X(b) − m(b))}, a, b = 1, 2. If X(1) and X(2) are not

independent each other, we shall consider a linear transformation in H(p) as follows by the use
of linear bounded operator M from H(p−r) to H(r),

Y (1) = X(1) +MX(2), Y (2) = X(2) (4)

choosing M so that the random variables Y (1) are independent of Y (2). By the same way

as the classical multivariate analysis [1], we get M = −R(1)(2)R−1
(2)(2). Using this result, the

expression (4) is given by

Y (p) =

[
Y (1)

Y (2)

]
=

[
I(r) −R(1)(2)R−1

(2)(2)

O I(p−r)

]
X(p) ≡ T X(p).

where I(r) and I(p−r) are the identity operators. Then the mean elements of Y (p) is given by
T m(p) and the covariance operator of Y (p) is given by T R(p)T ∗. Since Y (1) and Y (2) are
independent, we get

E(X(1)|x2) = m(1) +R(1)(2)R−1
(2)(2)(x(2) −m(2)) ≡ η(x(2))

If we denote the covariance operator of (X(1)|x2) by R(1)(1)·(2), then it should be given by

R(1)(1)·(2) = R(1)(1) − R(1)(2)R−1
(2)(2)R(2)(1). Along with usual finite dimensional multivariate

analysis ([1]), η(x(2)) is called regression of X(1) on x(2). and R(1)(2)R−1
(2)(2) is defined as

regression coefficient operator.

4. Principal Components
Let X(p) = (X1, X2, · · · , Xp)

′ be a H(p)-valued Gaussian random variables and µ(p) be a Borel
joint Gaussian probability measure. Now we shall consider an inner product

Z = [X(p),α](p), ∥α∥ = 1, α ∈ H(p)
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Since X(p) is joint Gaussian, Z is a real Gaussian random variable. Hereafter we assume that
E(X(p)) = 0, without loss of generality. By this assumption, E(Z) = [E(X(p)),α](p) = 0,
then the variance of Z is given by V(Z) = E{[X(p),α](p)[X(p),α](p)} =

[
R(p)α,α

]
(p)

. On the

other hand, let λ ∈ R and u ∈ H(p) are the eigenvalue and eigenvector of R(p), respectively,
we get the following relation R(p)u = λu, ∥u∥ = 1. Then if we put α = u, it follows
V(Z) = [R(p)u,u](p) = λ[u,u](p) = λ, that is, the variance of Z is given by the eigenvalue λ
of R(p). In order to maximize the variance of Z, we may take the coefficient element α as an
eigenvector u1 corresponding the largest eigenvalue λ1, i.e. λ1 ≥ λ2 ≥ λ3 ≥ · · · . Then we put
Z1 = [X(p),u1](p) and Z1 is called the first principal component. For each λk (k = 2, 3, . . .) we
put again Z2 = [X(p),u2](p) · · · Zk = [X(p),uk](p) by the use of corresponding eigenvector
uk (k = 2, 3, . . .). Zk is called k-th principal component. Since covariance operator R(p) is a
symmetric positive operator of trace class, we get the following relation

E(ZiZj) = λiδij .

Since Zk takes the real values, the most interesting point of these principal components will
be describe the multivariate functional data by the finite dimensional real space if we take finite
number of principal components.

5. Concluding Remarks
A real separable Hilbert space will be considered an infinite dimensional Euclidean space in
some aspects. Then the statistical data analysis under the framework of Gaussian measure on a
Hilbert space seems to gain no revelation compaired with classical multivariate analysis although
the dimension of the data could be extended.

In this paper, we will investigate the possibility and the theoretical background for multi-
variate functional data analysis using joint Gaussian measure on direct sum of finite number of
Hilbert spaces.

The author is also interested in the generalization of the concept of discriminant analysis by
Rao et al. [9] to multivariate functional data.
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