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Abstract

Many economic and financial applications require the forecast of a random variable

of interest over several periods into the future. The sequence of individual forecasts, one

period at a time, is called a path forecast, where the term path refers to the sequence

of individual future realizations of the random variable. The problem of constructing a

corresponding joint prediction region has been rather neglected in the literature so far:

such a region is supposed to contain the entire future path with a prespecified probability.

We develop a bootstrap method to construct such a joint prediction region. The resulting

region is proven to be asymptotically consistent under a mild high-level assumption. It

also has better finite-sample performance than previous proposals in the literature.
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1 Introduction

When predicting a random variable, a point forecast alone is often considered insufficient. In

addition, a statement about the uncertainty contained in the point forecast, as expressed by a

prediction interval, may also be desired.

This is similar to the situation where a point estimator of a population parameter alone is

considered insufficient; and where a statement about the uncertainty contained in the point

estimate, as expressed by a confidence interval, is also desired.

Constructing a prediction interval for a random variable is inherently more difficult than

constructing a confidence interval for a population parameter.

The discussion up to this point only applies to a single (future) random variable. In many

applications, however, a random variable of interest is predicted up to H periods into the

future. For example, one might predict future inflation for the next H = 12 months. A path

refers to the sequence of future realizations 1 to H periods into the future. A path forecast

refers to the sequence of corresponding forecasts 1 to H periods into the future.

On the one hand, one can constructH marginal prediction intervals by using a given method

to construct a prediction interval repeatedly, one period at a time. But, by design, probability

statements then only apply marginally, one period at a time: the prediction interval at a

specific horizon h, for some 1 ≤ h ≤ H, will contain the random variable h periods into the

future with prespecified probability 1− α.

On the other hand, a more general problem is the construction of a joint prediction region

that will contain the entire future path with the desired probability 1−α. For example, if one

would like to know with probability 1− α how high inflation might rise over the next H = 12

months, one needs to construct a joint prediction region for the future path at level 1 − α as

opposed to stringing together 12 marginal prediction intervals, each one at level 1− α.

Using Bonferroni’s inequality, a conservative joint prediction region can be constructed by

stringing together marginal prediction intervals at level 1−α/H instead of at level 1−α; ; for

example, such an approach is already mentioned by Lütkepohl (1991, Section 2.2.3). But since

Bonferroni’s inequality is generally crude, such an approach results in joint confidence regions

whose coverage probability is generally (much) above 1 − α and that are thus unnecessarily

wide, leading to a loss of information.

The construction of joint prediction regions for future paths of a random variable of interest

with coverage probability ‘near’ 1−α has been rather neglected in the forecasting literature so

far. Two notable exceptions are Jordà and Marcellino (2010) and Staszewska-Bystrova (2011).

The former work proposes an ‘asymptotic’ method that relies on the overly strong assumption

that forecast errors have, approximately, a normal distribution. The latter work proposes a

bootstrap method that is of heuristic nature only. Therefore, neither of the proposed methods

appears entirely safe to use in practice.

In this paper, we propose a bootstrap method to construct joint predictions regions that

are proven to contain future paths of a random variable of interest with probability 1− α, at

least asymptotically, under a mild high-level assumption.
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2 Path Forecast

Consider a random vector Y = (y1, . . . , yH)′ of interest with mean µ = (µ1, . . . , µH)′ = E(Y ).

For the purposes of this paper, Y will typically correspond to the values of a random variable 1

to H periods into the future; that is, to a future path of a random variable. But the discussion

below applies to any random vector. The underlying probability mechanism is denoted by P.

One can wish to predict Y or to estimate µ. Denote the forecast of Y by Ŷ and the

estimator of µ by µ̂. (When Y corresponds to a future path of a random variable, Ŷ is also

called a path forecast.) Often, the two are actually the same, that is, Ŷ = µ̂; for example, in

the context of linear regression models under quadratic loss. Therefore, in terms of a (point)

forecast of Y compared to a (point) estimate of µ, there often is no difference at all.

What if one desires the extension of an ‘uncertainty interval’ for a univariate quantity to a

‘(joint) uncertainty region’ for a multivariate quantity? Such a region should contain the entire

random vector Y or its mean µ, respectively, with a prespecified probability 1 − α. The two

solutions are fundamentally different and the former region will have to be larger (in volume)

due to the additional randomness contained in Y compared to its mean µ.

A potential complication with joint regions arises when uncertainty statements concerning

the individual components yh or µh, respectively, are desired. For example, this is typically the

case when a joint prediction region for Y is to be constructed in addition to a path forecast Ŷ .

One desires lower and upper bounds for each component yh in such a manner that the entire

vector Y be contained in the implied rectangle with probability 1− α. This is a trivial task if

the underlying joint prediction region is already of rectangular form. Therefore, our goal is to

construct joint confidence regions of rectangular form.

The joint regions discussed so far control the probability of containing the entire vector of

interest to be (at least) equal to 1 − α. Equivalently, they control the probability of missing

at least one component of the vector to be (at most) equal to α. Borrowing from the multiple

testing literature, the latter probability can be termed the familywise error rate (FWE); for

example, see Romano et al. (2008). So for a joint confidence region (JCR) for µ,

FWE = P{At least one of the µh not contained in the JCR} , (2.1)

whereas for a joint prediction region (JPR) for Y ,

FWE = P{At least one of the yh not contained in the JPR} . (2.2)

The next section details how the FWE can be controlled in practice. It only does this in

the context of a joint prediction region for Y . The method is similar in the context of a joint

confidence region for µ and is detailed in Romano and Wolf (2005, 2007) already.

Since the method is based on quantiles of random variables whose cumulative distribution

function may not be invertible, the following remark is in order.

Remark 2.1. If the cumulative distribution function of a random variable is not invertible,

then its quantiles are not necessarily uniquely defined. To be specific, we adopt the following

definition for quantiles in this paper.
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Let X be a random variable with cumulative distribution function F (·). Then, for λ ∈ (0, 1),

the λ quantile of (the distribution) of X is defined as inf{x : F (x) ≥ λ}.

3 Joint Prediction Regions Based on FWE Control

Any formal analysis has to be put into a suitable framework. To this end, we borrow some

notation from Jordà et al. (2010). We only discuss the case of a univariate time series; the

extension to the case of a multivariate time series can be found in Wolf and Wunderli (2012).

One observes a univariate time series {y1, . . . , yT } generated from a true probability mech-

anism P and wishes to predict the future path YT,H = (yT+1, . . . , yT+H)′. At time t, denote

a forecast h periods ahead by ŷt(h). Then a path forecast for YT,H is given by ŶT (H) =

(ŷT (1), . . . , ŷT (H))′. Denote the vector of prediction errors by ÛT (H) = (ûT (1), . . . , ûT (H))′ =

ŶT (H) − YT,H . Finally, σ̂T (h) denotes a prediction standard error, that is, a standard error

for ûT (h): it is an estimator of the unknown standard deviation of the random variable ûT (h).

We further assume a generic method to compute a vector of bootstrap prediction errors

Û∗
T (H) = (û∗T (1), . . . , û

∗
T (H))′, based on artificial bootstrap data {y∗1, . . . , y∗T , y∗T+1, . . . , y

∗
T+H}

generated from an estimated probability mechanism P̂T .

Our high-level assumption below is based on the two vectors of standardized prediction errors

ŜT (H) = (ûT (1)/σ̂T (1), . . . , ûT (H)/σ̂T (H))′ and Ŝ∗
T (H) = (û∗T (1)/σ̂

∗
T (1), . . . , û

∗
T (H)/σ̂∗

T (H))′,

respectively. Denote the probability law under P of ŜT (H)|yT , yT−1, . . . by ĴT . Also denote the

probability law under P̂T of Ŝ∗
T (H)|y∗T , y∗T−1, . . . by Ĵ∗

T . In the asymptotic framework, T tends

to infinity whereas H remains fixed.

Assumption 3.1. ĴT converges in distribution to a non-random continuous limit law Ĵ .

Furthermore, Ĵ∗
T consistently estimates this limit law: ρ(ĴT , Ĵ∗

T ) → 0 in probability, for any

metric ρ metrizing weak convergence.

Expressed in words, Assumption 3.1 states that, as the sample size T increases, the condi-

tional distribution of the vector of standardized bootstrap prediction errors Ŝ∗
T (H) becomes a

more and more reliable approximation to the (unknown) conditional distribution of the vector

of true standardized prediction errors ŜT (H).

We next specify the forms of the joint prediction regions for YT,H for the two-sided case;

the specification for the one-sided case can be found in Wolf and Wunderli (2012).

Some further notation is required. Suppose X = (x1, . . . , xH)′ is a vector with H compo-

nents. Then, |X| denotes the vector
(
|x1|, . . . , |xH |

)′
.

Let dmax
|·|,1−α denote the 1−α quantile of the random variable max

(
|ŜT (H)|

)
. Then a two-sided

joint prediction region for YT,H that exactly controls the FWE is given by

[
ŷT (1)± dmax

|·|,1−α · σ̂T (1)
]
× · · ·×

[
ŷT (H)± dmax

|·|,1−α · σ̂T (H)
]
. (3.1)

The problem is that this ideal region is not feasible, since the constant dmax
|·|,1−α is unknown.

It has to be estimated in practice by dmax,∗
|·|,1−α

, which is defined as the 1 − α quantile of the

random variable max
(
|Ŝ∗

T (H)|
)
. This quantile can typically not be derived analytically, but it
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can be simulated to arbitrary precision from a sufficiently large number of bootstrap samples;

see Wolf and Wunderli (2012) for the details.

Then a two-sided joint prediction region for YT,H that asymptotically controls the FWE is

given by [
ŷT (1)± dmax,∗

|·|,1−α
· σ̂T (1)

]
× · · ·×

[
ŷT (H)± dmax,∗

|·|,1−α
· σ̂T (H)

]
. (3.2)

The following proposition formally establishes the asymptotic validity of this feasible boot-

strap joint prediction region; the proof can be found in Wolf and Wunderli (2012).

Proposition 3.1. Under Assumption 3.1, the joint prediction region (3.2) for YT,H satisfies

lim sup
T→∞

FWE ≤ α . (3.3)

3.1 Comparison with Previous Methods

Jordà and Marcellino (2010) propose an alternative ‘asymptotic’ method to construct a joint

prediction region for YT,H that controls the FWE.1 It is based on the assumption that

√
T
(
ŶT (H)− YT,H |yT , yT−1, . . .

) d→ N(0,ΞH) , (3.4)

where
d→ denotes convergence in distribution, and on the availability of a consistent estimator

Ξ̂H
P→ ΞH , where

P→ denotes convergence in probability.

The proposed joint prediction region is given by

ŶT (H)± P





√
χ2
h,1−α

h




H

h=1

, (3.5)

where P is the lower-triangular Cholesky decomposition of Ξ̂H/T , satisfying PP ′ = Ξ̂H/T ,

and the quantity to the right of P is a H × 1 vector whose hth entry is given by
√
χ2
h,1−α/h.

This approach has several theoretical flaws, as explained by Wolf and Wunderli (2012).

Staszewska-Bystrova (2011) proposes an alternative bootstrap method to construct a joint

prediction region for YT,H that controls the FWE. In a nutshell, the method works as follows.

Conditional on the observed data, one generates B bootstrap path forecasts Ŷ ∗,b
T (H), for

b = 1, . . . , B. One then discards αB of these bootstrap path forecasts: namely those Ŷ ∗,b
T (H)

that are ‘furthest’ away from the original path forecast ŶT (H), where the distance between

two H × 1 vectors is measured by the Euclidian distance.2 Finally, the joint prediction region

is defined as the envelope of the remaining (1 − α)B bootstrap path forecasts, where the

term envelope refers to the smallest region containing all remaining bootstrap path forecasts.

Although this neighboring paths (NP)method seems to perform quite well in simulation studies,

it is purely heuristic and not backed up by theoretical analysis.

As evidenced by extensive Monte Carlo studies in Wolf and Wunderli (2012), our proposed

bootstrap joint confidence region also has better finite-sample coverage properties than these

two previous proposals, and in particular than the proposal of Jordà and Marcellino (2010).

1They use the term joint confidence region instead of joint prediction region.
2Staszewska-Bystrova (2011) also considers other distance measures, but concludes that the Euclidean dis-

tance seems to work best.
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4 Conclusions

Many economic and financial applications require the forecast of a random variable of interest

over several periods into the future, that is, one needs to forecast an entire future path. In

addition to the resulting path forecast, one often would also like to compute a corresponding

joint prediction region. Such a region is supposed to contain the entire future path with a

prespecified probability 1− α.

In this paper, we have proposed a two-sided bootstrap joint prediction region; in addi-

tion, analogous one-sided lower and one-sided upper joint prediction regions are detailed in

Wolf and Wunderli (2012). This way, the applied researcher can choose the most suitable shape

for the task at hand. Furthermore, the joint prediction regions are completely generic in that

they allow the applied researcher to select whichever methods are deemed most appropriate

by him to make forecasts, compute prediction standard errors, and generate bootstrap data.

Compared to two previous proposals in the literature, our bootstrap joint prediction regions

have two important advantages. First, they are proven to be asymptotically consistent under

a realistic, mild high-level assumption. Second, they enjoy superior finite-sample properties,

as demonstrated via extensive Monte Carlo simulations in Wolf and Wunderli (2012).
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Jordà, Ò. and Marcellino, M. G. (2010). Path-forecast evaluation. Journal of Applied Econo-

metrics, 25:635–662.

Lütkepohl, H. (1991). Introduction to Multiple Time Series Analysis. Springer, Berlin.

Romano, J. P., Shaikh, A. M., and Wolf, M. (2008). Formalized data snooping based on

generalized error rates. Econometric Theory, 24(2):404–447.

Romano, J. P. and Wolf, M. (2005). Stepwise multiple testing as formalized data snooping.

Econometrica, 73(4):1237–1282.

Romano, J. P. and Wolf, M. (2007). Control of generalized error rates in multiple testing.

Annals of Statistics, 35(4):1378–1408.

Staszewska-Bystrova, A. (2011). Bootstrap prediction bands for forecast paths from vector

autoregressive models. Journal of Forecasting, 30(8):721–735.

Wolf, M. and Wunderli, D. (2012). Bootstrap joint prediction regions. Working Paper

ECON 64, Department of Economcis, University of Zurich.

Proceedings 59th ISI World Statistics Congress, 25-30 August 2013, Hong Kong (Session CPS022) p.3921


	Introduction
	Path Forecast
	Joint Prediction Regions Based on FWE Control
	Comparison with Previous Methods

	Conclusions

