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Abstract 
 

Let  TtX t ,  be autoregressive time series, where T  is discrete time, and let 

nXXX ,,, 21   be the sample that satisfies the AR(1) process. Thus, the sample 
follows the relation ttt XX   1  where  t  is a zero mean white noise process 

with constant variance 2 . Let ̂  be the estimator for parameter  . Brockwell and 
Davis (1991) showed that  pˆ  and    2,0ˆ  Nn d .  Meantime, by 

some assumptions, can be showed that the distribution of  Xn  converges to 

normal distribution with mean 0 and variance 2  as n . In bootstrap view, the 
key of bootstrap terminology says that the population is to the sample as the sample is 
to the bootstrap samples. Therefore, when we want to investigate the consistency of 
the interesting bootstrap estimator for sample mean, we investigate the distribution of 

 XXn *  contrast to  Xn , where *X is bootstrap version of X  computed 
from sample bootstrap *X . Asymptotic theory of the bootstrap sample mean is useful 
to study the consistency for many other statistics. Let *̂  be the bootstrap estimator 
for ̂ . In this paper we investigate the consistency of *̂  using delta method and 
applying the residuals bootstrap. We also present the Monte Carlo simulations  in 
regard to yield apparent conclusions. 
 
Keywords: Bootstrap, consistency, delta method, Monte Carlo simulations, time 
series 
 
 
1. Introduction 
 
Studying of estimation of the unknown parameter   involves: (1) what estimator ̂  
should be used? (2) having choosen to use particular ̂ , is this estimator consistent to 
the population parameter  ?  (3) how accurate is ̂   as an estimator of  true 
parameter  ? The bootstrap is a general methodology for answering the second and 
third questions. Consistency theory is needed to ensure that the estimator is consistent 
to the actual parameter as desired.  

Consider the parameter   is the population mean. The consistent estimator for   

is the sample mean  


n

i iX
n

X
1

1
̂ . The consistency theory is then extended to 

the consistency of bootstrap estimator for mean. According to the bootstrap 
terminology, if we want to investigate the consistency of bootstrap estimator for mean, 
we investigate the distribution of   Xn  and  XXn * .  The consistency of 
bootstrap under Kolmogorov metric is defined as  
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      .sup * xXXnPxXnP
nFF

x
                            (1)     

Bickel and Freedman (1981) and Singh (1981) showed that (1) converges almost 
surely to 0 as n . Meanwhile, Suprihatin, et.el  (2011)  complete the results by 
giving nice ilustrations for this case. The consistecy of bootstrap for mean is a worthy 
tool for studying the consistency of other statistics. In this paper, we study the 
consistecy of bootstrap estimator for parameter of the AR(1) process. 

The consistency of bootstrap estimator for mean is then applied to study the 
consistency of bootstrap estmate for parameter of the AR(1) process using delta 
method. We describe the consistency of bootstrap estimates for mean and parameter of 
the AR(1) process.  Section 2 reviews the consistency of bootstrap estimate for mean 
under Kolmogorov metric. Section 3 deal with the consistency of bootstrap estimate 
for parameter of the AR(1) process using delta method. Section 4 discuss the results of 
Monte Carlo simulations involve bootstrap standard errors and density estmation for 
mean and parameter of the AR(1) process. Section 5, is the last section, briefly 
describes the conclusions of the paper. 

 
 

2. Consistency of  Bootstrap Estimator For Mean 
 
Let  nXXX ,,, 21   be a  random sample of size n from a population with common 
distribution F and let  FXXXT n;,,, 21   be the specified random variable or 
statistic of interest, possibly depending upon the unknown distribution F. Let nF  
denote the empirical distribution function of  nXXX ,,, 21  , i.e., the distribution 
putting probability 1/n at each of the points nXXX ,,, 21  . The bootstrap method is 
to approximate the distribution of   FXXXT n;,,, 21   under F by that of 

 nn FXXXT ;,,, **
2

*
1   under nF  whrere  **

2
*
1 ,,, nXXX   denotes a bootstrapping 

random sample of size n from nF .  
We start with definition of consistency. Let F and G  be two distribution functions 

on sample space X. Let  GF ,  be a metric on the space of distribution on X. For 

nXXX ,,, 21    i.i.d from F, and a given functional  FXXXT n;,,, 21  , let  
  xFXXXTPxH nFn  ;,,,)( 21  , 

  xFXXXTPxH nnBoot  ;,,,)( **
2

*
1*  . 

We say that the bootstrap is consistent (strongly) under   for T if 
  ..0, saHH Bootn   

Let functional T is defined as     XnFXXXT n ;,,, 21   where X  and 
  are sample mean and population mean respectively. Bootstrap version of T  is 

   XXnFXXXT nn  ***
2

*
1 ;,,,  , where *X  is boostrapping sample mean. 

Bootstrap method is a device for estimating   xXnPF    by 

  xXXnP
nF * . We will investigate the consistency of bootstrap under 

Kolmogorov metric  which is  defined  as  
  )()(sup, xGxFGFK

x
  =       .sup * xXXnPxXnP

nFF
x

   

Some theorems and lemma which are needed to show that   ..0, saHHK Bootn   
taken from Hall (1992), Serfling (1980) and van der Vaart (2000), such as Khintchine-
Kolmogorov Convergence Theorem, Berry-Essen Theorem, and Zygmund-
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Marcinkiewicz SLLN. The consistency of BootH  under Kolmogorov metric have 

shown by Sigh (1981) and DasGupta (2008). The crux result is that  XX *  a.s. 
Suprihatin, et.al (2011) give nice simulations for this result.  
  

 
3. Consistency of Bootstrap Estimate For Parameter of AR(1) Process Using 

Delta Method 
 

The delta method consists of using a Taylor expansion to approximate a random 
vector of the form  nT  by the polynomial        nT  in nT . This 
method is useful to deduce the limit law of     nT  from that of nT . This 
method is also valid in bootstrap view, which is given in the following theorem. 

 
 

Theorem 1 (Delta Method For Bootstrap)  Let mk :  be a measurable map 

defined and continously differentiable in a neighborhood of  . Let n̂  be random 
vectors taking their values in the domain of   that converge almost surely to  . If 

  Tn d
n ̂  and   Tn d

n  ˆˆ*  conditionally almost surely, then 

both       Tn d
n  ˆ  and       Tn d

nn   ˆˆ*  
conditionally almost surely.   

  
Let   is the population mean, and then X  is the sample mean. The Kolmogorov  

SLLN asserts that X  a.s. and     2,0  NXn d . The resulting of 

Section 2 shows that    2* ,0 sNXXn d .  Based on the consistency of the 
bootstrap for the sample mean we investigate the consistency of the bootstrap estimate 
for parameter of AR(1) process using delta method.   

Let },,2,1,{ ntX t    be time series data which satisfies  the AR (1) process, i.e. 
if },,2,1,{ ntX t   follows the equaiton ttt XX   1   where }{ t  be random 

variable sequence of white noise with mean 0 and variance 2 . The process is 
stationary if 1 . The comprehensive discussions for time series can be found in  
Wei (1990) and  Brockwell and Davis (1991). 
      For the AR(1) process, from Yule-Walker equation we obtain the estimate for   
is 1ˆˆ    where 1̂  be the lag 1 sample  autocorrelation  






  n

t t

n

t tt

X

XX

1
2

2 1
1̂ .                                                       (2) 

According to Wei (1990) and Brockwell and Davis (1991), the estimate of standard 

error of parameter   is  ݏෞ݁(ߠ) = 
n

2ˆ1 
.  Meanwhile, the bootstrap version of 

standard error was introduced by Efron, B. and Tibshirani, R. (1986). In Section 4 we 
demonstrate results of Monte Carlo simulations consist the two of standard errors and 
give brief comments. From (2) we can see that 

            
 






  
 n

t t

n

t ttt

X

XX

1
2

2 11
1ˆ


   
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




   
 n

t t

n

t tt
n

t t

X

XX

1
2

2 12
2

1 
 

 





 


  
 n

t t

n

t tt
n

t nt

X

XXX

1
2

2 1
1

2
22

1 
 







 



n

t t

n

t ttn
n

t t

X
n

X
n

X
n

X
n

1
2

2 1
2

1
2

1

1 

 

 
Brockwell and Davis (1991) have shown that 1̂  is consistent estimator of  true 

parameter 1  .  Kolmogorov SLLN asserts that  tt
san

t tt XEX
n

 1
.

2 1
1

   . 

Since 1tX  is independent of t , then  ttXE 1  = 0. Hence,  

01 .
2 1   

san

t ttX
n

 . Finally, (2) is approximated by .~
2

22

1
X

X
n

X n





  Thus, 

for n  we obtain 1
~ˆ   . We see that 1

~  equals to  2X  for the function

 
x

X
n

x
x

n
2




 . Since   is continous and hence is measurable. 

Meantime, the bootstrap version of  ̂ , denoted by *̂  can be obtained as follows 
[see, e.g.  Efron dan Tibshirani (1986) and Bose (1988)]: 

1. Define the residuals 1
ˆˆ  ttt XX   for .,,3,2 nt    

2. A bootstrap sample **
2

*
1 ,,, nXXX   is created by sampling **

3
*
2 ,,, n    with 

replacement from the residuals. Letting 1
*
1 XX   as an initial bootstrap 

sample dan **
1

* ˆ
ttt XX    , nt ,,3,2  . 

3. Finally, after centering the bootstrap time series **
2

*
1 ,,, nXXX   i.e. *

iX  is 

replaced by ** XX i   where  


n

t tX
n

X
1

** 1
. Using the plug-in principle, 

we obtain the bootstrap estimator  *
1

* ˆˆ  





  n

t t

n

t tt

X

XX

1

2*
2

**
1  computed from 

the sample **
2

*
1 ,,, nXXX   .  

 
Analog with the previous discussion, we obtain the bootstrap version for 

counterpart of  1
~ , that is measurable map  .~

2*

2*2*

*
1

X

X
n

X n





   Thus, according to 

Theorem 1 we conclude that *
1

~  converges to 1
~  conditionally almost surely. 

Furthermore,   Tn d 1
*
1

~~   and for n  we obtain 
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  Tn d 1
*
1 ˆˆ   where T is a normal distribution with zero mean and variance 

2
24    with 2  and 4  are second and fourth moments repectively. 

 
 

4. Results of Monte Carlo Simulations 
 

The simulation is conducted using S-Pus and the sample is the 50 time series data of  
exchange rate of US dollar compared to Indonesian rupiah. Data is taken from 
authorized website of  Bank Indonesia, i.e. http://www.bi.go.id for fifty days of 
transactions on March and April 2010. Suprihatin, et. al. (2011) has identified that the 
time series data satisfies the AR(1) procces, such that the data follows the equation 

,50,,3,2,1   tXX ttt   

where t ~ WN  2,0  . The simulation yields the estimator for parameter   is ̂  =  
-0,448 with standard error 0,1999.  To produce a good approximation, Efron and 
Tibshirani (1986) and Davison and Hinkley (2006) suggest to use the number of 
resamples at least B = 50. Bootstrap version of standard errror using bootstrap samples 
of size B = 25, 50, 100, 200, 500 and 1000 yielding as presented in Table 1. 
 

Table 1  Estimates for Standard Errors of *̂  for Various B  

 B 
25 50 100 200 500 1000 

 *
ˆ ̂Fse  0,2005 0,1981 0,1997 0,1991 0,1972 1,1964 

 
      From Table 1 we can see that the values of bootstrap standard errors tend to 
decrease in term of size of B increase and closed to the value of  0,1999 (actual 
standard error). These results show that the bootstrap gives a good estimate. 
Meantime, the histogram and density estimate of *̂  are presented in Figure 1. From 
Figure 1 we can see that the resulting histogram close related to the normal density. Of 
course, this result agree to the result of Freedman (1985) and Bose (1988). 
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Figure 1  Histogram and Density Estimate of Bootstrap Estimator *̂  
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5. Conclusions 
 
A number of points arise from the study of Section 2, 3, and 4, amongst which we 
state as follows. 

1. Consider an AR(1) process ttt XX   1  with Yule-Walker estimator ̂  = 

1̂  is a consistent estimator for  true parameter 1  .  By using the delta 
method we have shown that *

1
~  is also a consistent estimator for 1

~   where 

1
~ˆ     for n . Moreover, we obtain that   Nn d 1

*
1

~~   and 

for n  the crux result is that   Nn d 1
*
1 ˆˆ   where N is a normal 

distribution. 
2. Resulting of Monte Carlo simulations show that the bootstrap esstimators are 

good approximations, as represented by their standard errors and plot of 
densities estimation. 
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