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Abstract

In this paper we discuss efficient computation of the maximum likelihood estimator
(MLE) for general log linear models for contingency tables. In general an iterative algo-
rithm, such as the iterative proportional fitting (IPF), is required for computing the MLE
of a log linear model. For a hierarchical model, it is well known that the updating rule for
IPF is localized according to the separation or decomposition of the graph describing con-
ditional independence structure among variables of the model and then the computational
cost is reduced (e.g. [1]). Here we extend the algorithm for a hierarchical model to the
hierarchical subspace model (HSM) introduced by [2] and propose an efficient algorithm
of updating rule of IPF for HSM.

Keywords : chordal extension, graphical model, hierarchical model, information propa-
gation, iterative proportional fitting

1 Introduction

Consider an m-way contingency table {x(i), i ∈ I} with the set of variables [m] =
{1, . . . , m}, where i denotes each cell and I denotes the set of cells. x(i) is a frequency
for a cell i. For a subset D ⊂ [m], denote by iD a marginal cell for D. Let ID be the set
of marginal cells for D. Let ∆ be a simplicial complex with the set of vertices [m]. Then
hierarchical model defined by ∆ is expressed by

log p(i) =
∑
D∈∆

µD(iD). (1)

Models (1) with linear restrictions among natural parameters is extensively used in
practical data analysis (e.g. [3, 4]). The canonical form of such a model is written by

log p(i) =
∑
D∈∆̃

φD(iD)βD, (2)

where φD(iD) = {φk
D(iD)}k=1,...,KD

is 1×KD vector of known functions of iD and βD is
KD × 1 parameter vector. Since the model (2) is the models (1) with linear constraint,
these two models have the same interaction terms corresponding to ∆. In canonical form
(2), however, we note that ∆̃ is also a simplicial complex but not equal to ∆ in general
(e.g. [2]). The model (2) is still an exponential family and therefore a linear subspace of
hierarchical model (1). The model (2) is also called hierarchical subspace model (HSM,
[2]).

In this paper we discuss an efficient computation of maximum likelihood estimator
(MLE) of HSM (2). Define

tD :=
∑

iD∈ID

φD(iD)x(iD).
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Then the sufficient statistic t for HSM (2) is

t = {tD | D ∈ ∆̃}.

Then the likelihood equations are written by

tD = E[tD] = n
∑

iD∈ID

φD(iD)p(iD), D ∈ ∆̃.

In general MLE of HSM (2) is not explicitly obtained and iterative computation is required
to compute MLE. Iterative proportional fitting algorithm (IPF) is one of the popular
algorithms for computing MLE. IPF for HSM is described as follows.

Algorithm 1 (IPS for HSM).

Step 0 t← 0, p(t)(i)← 1/n

Step 1 For all D ∈ ∆̃ and k = 1, . . . ,KD, update p(t)(i) as

p(t+1)(i)←
∑

iD∈ID
φk

D(iD)x(iD)

n
∑

iD∈ID
φk

D(iD)p(t)(iD)
· p(t)(i), i ∈ I. (3)

Step 2 If p(t+1)(i) converges for all i, output p(t+1)(i). If not, go back to Step 1.

It is well known that the convergence of this algorithm to MLE is guaranteed (e.g. [5]).
Step 1 requires O(|I|) times updates. For a hierarchical model (1), however, it is known
that the updating rule for IPF is localized according to the separation or decomposition of
the graph describing conditional independence structure among variables of the model and
then the computational cost can be reduced (e.g. [1]). The main purpose of this paper is
to extend the argument in hierarchical model to HSM. As discussed in [2], decomposition
of an HSM does not always correspond to that of its conditional independence graph G∆

and hence the algorithm of [1] cannot be applied directly to HSM. In this paper we show
that by defining the decomposition of a HSM properly, we can apply the algorithm of [1]
also to HSM.

2 Main Results

2.1 Decomposition of HSM

As discussed the previous section, the canonical form of HSM (2) is defined by a simplicial
complex ∆̃. In general ∆̃ is not equal to ∆. As mentioned in the previous section, the
model (2) and the models (1) have the same interaction terms corresponding to ∆. Let
H∆ be a hypergraph with the set of vertices [m] and the set of hyperedges ∆. Then H∆

also describes the conditional independence structure of both (1) and (2). Let C and S be
the set of compact components and dividers of H∆ (see [1]). Let ν(S) be the multiplicity
of S ∈ S (e.g. [5]). Then p(i) is expressed by

p(i) =
∏

C∈C p(iC)∏
S∈S p(iS)ν(S)

. (4)

When φD(iD)βD = µD(iD), ∀iD ∈ ID, in (2), D is called saturated in (2). For any
hierarchical model (1), every S is known to be saturated in (1). For HSM, however, S is
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not always saturated. Furthermore, if S is not saturated in (2), marginal models p(iC)
and p(iS) are no longer full exponential families and therefore they are not HSMs in
general. If there is a linear constraint of parameters across more than one facet, ∆̃ ⊃ ∆
in the canonical form (2). This fact indicates that the decomposition of HSM does not
necessarily correspond to that of H∆ or G∆.

Let H∆̃ be a hypergraph with the set of vertices [m] and the set of hyperedges ∆̃.
Let S∗ be the set of dividers of H∆̃ which are saturated in (2). Let C∗ be the set of
compact component defined by S∗. The elements of C∗ are also called extended compact
components ([2]). Then p(i) satisfies

p(i) =
∏

C∗∈C∗ p(iC∗)∏
S∗∈S∗ p(iS∗)ν(S∗)

(5)

and marginal models p(iC∗) satisfy

p(iC∗) =
∑

C∗∩D,D∈∆̃

φD(iD)βD.

Hence p(iC∗) is still an HSM ([2]). Since S ∈ S∗ is saturated in (2), the MLE of p(iS∗)
is the corresponding relative marginal frequency x(iS∗)/n, where n is total sample size.
Therefore the MLE of p(i) is expressed by

p̂(i) =
∏

C∗∈C∗ p̂(iC∗)∏
S∗∈S∗(xS(iS∗)/n)ν(S∗)

. (6)

This fact shows that in order to compute the MLE of HSM (2) by IPF, it suffices to apply
IPF to each marginal model p(iC∗) C∗ ∈ C∗. Then the computational cost for a update is
reduced to O(

∑
C∗∈C∗ |IC∗ |).

2.2 Information propagation algorithm for HSM

In this section we assume that an HSM (2) satisfies S∗ = ∅. Such an HSM is called prime.
For a prime HSM, we can directly apply the information propagation algorithm of [1]. Let
Ḡ∆ be a chordal extension of conditional independence model G∆. Let C̄ and S̄ be the
set of maximal cliques and minimal vertex separators of Ḡ∆. Let T̄C be a directed clique
tree of G∆ with a root C̄. Then the algorithm is described as follows.

Algorithm 2 (Updating rule for localized IPS at time t + 1).

Step 1 For D ∈ ∆ and k, choose any C̄ ∈ C̄ satisfying D ⊂ C̄.

Step 2 Update p(iC̄), i ∈ I by

p(t+1)(iC̄)←
∑

iD∈ID
φk

D(iD)x(iD)

n
∑

iD∈ID
φk

D(iD)p(t)(iD)
· p(t)(iC̄)

Step 3 For all descendants C̄ ′ of C̄ on T̄C , update p(iC̄′) in the following way.

3-1. Assume that all ancestors of C ′ are already updated. From a parent C̄ ′′ of C̄ ′,
receive p(t+1)(iS̄), where S̄ = C̄ ′ ∩ C̄ ′′.
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3-2. Update p(iC̄′) by

p(t+1)(iC̄′)←
∑

iD∈ID
p(t+1)(iS̄)∑

iD∈ID
p(t)(iS̄)

· p(t)(iC̄′).

The computational cost of the above algorithm for updating p(i) is O(
∑

C̄∈C̄ |IC̄ |). In
general

∑
C̄∈C̄ |IC̄ | < |I|.

Theorem 1. The output of Algorithm 2 is the same as the output of the updating rule
(3).

Proof. p(t)(i) is written by

p(t)(i) =
∏

C̄∈C̄ p(t)(iC̄)∏
S̄∈S̄ p(t)(iS̄)

.

The updating rule for p(t)(iC̄) in Step 2 is

p(t+1)(iC̄) =

∑
iD∈ID

φk
D(iD)x(iD)

n
∑

iD∈ID
φk

D(iD)p(t)(iD)
· p(t)(iC̄),

The updating rule for p(t)(iC̄′) in Step 3 is

p(t+1)(iC̄′)←
∑

iD∈ID
p(t+1)(iS̄)∑

iD∈ID
p(t)(iS̄)

· p(t)(iC̄′).

Noting that

p(t+1)(iS) =
p(t+1)(iS)
p(t)(iS)

p(t)(iS),

we obtain

p(t+1)(i) =

∑
iD∈ID

φk
D(iD)x(iD)

n
∑

iD∈ID
φk

D(iD)p(t)(iD)
· p(t)(i).
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