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Abstract. The threshold GARCH (TGARCH) models have been very useful for
analyzing asymmetric volatilities arising from financial time series. Most research on
TGARCH has been directed to the stationary case. This paper studies the estimation
of non-stationary first order TGARCH models. Gaussian quasi-maximum likelihood
estimation (G-QMLE) and normal mixture quasi-maximum likelihood estimation (NM-
QMLE) for non-stationary TGARCH models are proposed. We show that the proposed
estimators are consistent and asymptotically normal under mild regular conditions.
The impact of relative tail heaviness of the innovations distribution and quasi-likelihood
distributions on the asymptotic efficiency has been thoroughly discussed.
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1 Introduction

Since the seminal papers by Engle (1982) and Bollerslev (1986), GARCH mod-
els have been proved particularly valuable in modelling time varying volatility. Most
literature on inference of GARCH models is based on Gaussian quasi-maximum likeli-
hood estimation (G-QMLE) due to its simplicity. Regarding to the asymptotic infer-
ence of the G-QMLE for stationary GARCH models, the consistency and asymptotic
normality have been established under different conditions, see Berkes et al. (2003),
Hall and Yao (2003), and Francq and Zaköıan (2004) etc.. However, gain in robust-
ness comes with efficiency loss, which means that the variance of the estimates fails to
reach the Cramér-Rao bound, see González-Rivera and Drost (1999). On other hand,
many authors pointed out strong evidence against the normality assumption through
empirical studies, see for instance Mikosch and Stărică (2000). Based on a general
quasi-likelihood distribution which may be very heavy-tailed, Berks and Horváth
(2004) proposed a class of QMLE for stationary GARCH models and compared the
efficiency of QMLE based on different quasi-likelihood distribution assumptions. In
the statistics literature, mixtures of distributions have been widely used in model-
ing of heavy-tailed distributions, see for instance Zhang et al. (2006). Specially,
to capture the skewness and heavy-tail of the innovations Lee and Lee (2009) pro-
posed the normal mixture QMLE (NM-QMLE), which is obtained from the normal
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mixture quasi-likelihood, and demonstrated that the NM-QMLE is consistent and
asymptotically normal.

Nonstationarity in the volatility process has been well documented for macroe-
conomic and financial time series data, see Loretan and Phillips (1994) and Hwang
et al. (2010). Jensen and Rahbek (2004 a, 2004 b) are the first to consider the
asymptotic theory of the G-QMLE for non-stationary ARCH/GARCH(1,1) models.
The further studies for inference of non-stationary GARCH models include Linton
et al. (2010) and Francq and Zaköıan (2012). Among the asymmetric GARCH mod-
els, threshold GARCH (TGARCH) model is one of the most popular models in the
literature, see Li and Li (1996), Pan et al.(2008) and Hwang et al. (2010). Note
that nonstationary TGARCH models capture the nonstationarity and asymmetry
of the volatility of time series data simultaneously. This motivates us to study the
estimation problem of nonstationary TGARCH models.

In this paper, we propose G-QMLE and NM-QMLE for nonstationry TGARCH(1,
1) model and show that the G-QMLE and NM-QMLE are both consistent and asymp-
totically normal under some regular conditions. We find that the NM-QMLE is more
efficient than G-QMLE when the distribution of innovations is more heavy-tailed
than Gaussian distribution through a simulation.

The rest of this paper is organized as follows. In Section 2, G-QMLE of non-
stationary TGARCH(1, 1) models is considered. Section 3 presents G-QMLE of
nonstationary TGARCH(1, 1) models. The asymptotic efficiencies are discussed in
Section 4.

2 The model and the Gaussian-QMLE

The TGARCH(1, 1) model is defined by

Xt = σtεt and σ2
t = ω + α+(X+

t−1)
2 + α−(X−

t−1)
2 + βσ2

t−1, (2.1)

where ω > 0, α+ ≥ 0, α− ≥ 0, β ≥ 0 are unknown parameters, and {εt} is a sequence
of independent and identically distributed (iid) random variables with Eεt = 0 and
Eε2

t = 1, such that εt is independent of {Xt−k, k ≥ 1} for all t. According to Pan
et al. (2008), there exists a unique strictly stationary and ergodic solution to model
(2.1) if and only if E log

[
α+(ε+

t−1)
2 + α−(ε−t−1)

2 + β
]

< 0. The initial value of Xt is
assumed to be X0 and the unobserved σ2

0 is parameterized by η0. The parameter of
model (2.1) is then φ = (α+, α−, β, ω, η)′ with true value φ0 = (α+

0 , α−0 , β0, ω0, η0)′.
Let ϕ = (α+, α−, β)′ and ψ = (ω, η)′ with the true value ϕ0 = (α+

0 , α−0 , β0)′ and
ψ0 = (ω0, η0)′ respectively. Define

σ2
t (φ) = ω + α+(X+

t−1)
2 + α−(X−

t−1)
2 + βσ2

t−1(φ) (2.2)

with σ2
0(φ) = η and σ2

t (φ0) = σ2
t .

The G-QMLE φ̂1n is defined as a maximizer of Gaussian quasi log-likelihood
function, equivalently φ̂1n = arg minφ lGn (φ), where

lGn (φ) =
1
n

n∑

t=1

[
log σ2

t (φ) +
X2

t

σ2
t (φ)

]
, (2.3)
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and σ2
t (φ) is defined by (2.2). Denote lGn (φ)|φ=(ϕ′,(ψ0)′)′ by lGn (ϕ) and lGn (φ)|φ=(ϕ′,ψ′∗)′

by lGn∗(ϕ), where lGn (φ) is defined in (2.3), and ψ∗ = (ω∗, η∗)′ is some fixed value of
ψ.

We will carry out the discussion under the following basic assumptions.

A1. γ0 = E log
[
α+

0 (ε+
t−1)

2 + α−0 (ε−t−1)
2 + β0

] ≥ 0

A2. Eε2
t = 1 and neither ε+

t nor ε−t is constant.

A3. Eε4
t < ∞.

Theorem 1. Suppose assumptions A1-A3 hold. Then it follows that
(i) There exists a fixed open neighborhood N(ϕ0) of ϕ0 such that lGn (ϕ) has a

unique minimum ϕ̂1n in N(ϕ0) with probability tending to one as n →∞ and ϕ̂1n is
consistent. Furthermore, ϕ̂1n is asymptotically normal

√
n(ϕ̂1n − ϕ0)

L−→ N
(
0, (Eε4

t − 1)J−1
)
,

where J = EDtD
′
t and Dt = (D1t, D2t, D3t)′ with

D1t =
+∞∑

j=1

βj−1
0 (ε+

t−j)
2

j∏

k=1

1
α+

0 (ε+
t−k)

2 + α−0 (ε−t−k)
2 + β0

,

D2t =
+∞∑

j=1

βj−1
0 (ε−t−j)

2
j∏

k=1

1
α+

0 (ε+
t−k)

2 + α−0 (ε−t−k)
2 + β0

,

D3t =
+∞∑

j=1

βj−1
0

j∏

k=1

1
α+

0 (ε+
t−k)

2 + α−0 (ε−t−k)
2 + β0

.

(ii) If γ0 in assumption A1 is strictly positive, the results in (i) hold for lGn∗(ϕ).

3 The NM-QMLE

Compared with Gaussian distribution, normal mixture distribution is more ap-
propriate for modeling heavy-tailed and skewed data. In this subsection we establish
the asymptotic properties of NM-QMLE for nonstationary TGARCH(1, 1) models.
The s component normal mixture (NM) density is of the form

gϑ(y) =
s∑

k=1

pkf(y;µk, %k), (3.1)

where ϑ = (p1, · · · , ps−1, µ1, · · · , µs−1, %1, · · · , %s)′ and f(y;µk, %k) = 1√
2π%k

exp
{
−

(y−µk)2

2%2
k

}
satisfying

s∑

k=1

pk = 1,
s∑

k=1

pkµk = 0 and
s∑

k=1

pk(µ2
k + %2

k) < ∞. (3.2)

In general, the s component normal mixture distribution is not identifiable, so we
need the same identification condition as in Lee and Lee (2009). Furthermore, we
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assume G is nondegenerate, that is, any s-component normal mixture density in G
can not be represented as a mixture with the number of components less than s.

Conditionally on initial values X0, η0, the normal mixture quasi-likelihood is given
by

LNM
n (ϑ, φ) =

n∏

t=1

{ s∑

k=1

pk
1√

2π%2
kσ

2
t (φ)

exp
{
− (Xt − µkσt(φ))2

2%2
kσ

2
t (φ)

}}
. (3.3)

A natural idea is to obtain an estimator of φ by maximizing LNM
n (ϑ, φ), and nuisance

parameters ϑ are also estimated at the same time. Since the density function g of εt

may be not in G, then what does the true value ϑ0 of ϑ mean? One may hope ϑ0 can
minimize the discrepancy between the true innovation density g and the quasi likeli-
hood normal mixture density in the sense of Kullback-Leibler Information Distance
(KLID). Thus, we define the true value ϑ0 = (p10, · · · , p(s−1)0, µ10, · · · , µ(s−1)0, %10,
· · · , %s0)′ as follows,

ϑ0 =
{
ϑ ∈ Θ̃ : d(g, gϑ) = min

t∈Θ̃
d(g, gt)

}
, (3.4)

where d(g, gt) =
∫

g(x)
(
log g(x)− log gt(x)

)
dx is the KLID between g and gt. Note

that ϑ0 here only depends on the KLID of the two densities under consideration.
Once ϑ0 is given, namely the true innovation distribution g is known, the NM-QMLE
φ̂2n is defined by maximizing normal mixture quasi likelihood with parameter ϑ0. Put
θ = (ϑ′, φ′)′ with true value θ0 = (ϑ0

′, φ0
′)′ and

lNM
n (θ) = lNM

n (ϑ, φ) =: −n−1 log LNM
n (ϑ, φ) = n−1

n∑

t=1

Wt(θ), (3.5)

where

Wt(θ) = Wt(ϑ, φ) = − log
{

1
σt(φ)

gϑ

( Xt

σt(φ)

)}
(3.6)

and LNM (ϑ, φ) is defined in (3.3). Namely, we define

φ̂2n = arg min lNM
n (ϑ0, φ). (3.7)

For −∞ < y < ∞ and t > 0, let

hϑ(y, t) = log
(
tgϑ(yt)

)
, h1ϑ(y, t) =

∂hϑ(y, t)
∂t

=
1
t

+
y

gϑ(yt)
∂gϑ(yt)

∂y
, (3.8)

h2ϑ(y, t) =
∂2hϑ((y, t)

∂t2
= − 1

t2
− y2

g2
ϑ(yt)

[∂gϑ(yt)
∂y

]2
+

y2

gϑ(yt)
∂2gϑ(yt)

∂y2
(3.9)

In order to obtain asymptotic properties of φ̂2n, we need the following regularity
conditions:

A4. Θ is compact and θ0 lies in the interior of Θ;

A5. Eh2ϑ0(ε0, 1) 6= 0;

A6. Eε6
t < ∞.
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We are now ready to state our asymptotic results for the NM-QMLE φ̂2n.

Theorem 2. Suppose G is identifiable and nondegenerate. If assumptions A1-A6
hold, then it follows that

(i) There exists a fixed open neighborhood N(ϕ0) of ϕ0 such that lNM
n (ϕ) has a

unique minimum ϕ̂2n in N(ϕ0) with probability tending to one as n → ∞, and ϕ̂2n

is consistent. Furthermore, ϕ̂2n is asymptotically normal,
√

n(ϕ̂2n − ϕ0)
L−→ N

(
0, 4τ2J−1

)
.

Here τ2 = Eh2
1ϑ0

(ε0, 1)/E
(
h2ϑ0(ε0, 1)

)2 and J = EDtD
′
t.

(ii) If γ0 in assumption A1 is strictly positive, the results in (i) hold for lNM
n∗ (ϕ).

If ϑ0 is unknown, the NM-QMLE of θ0 is then defined by

θ̂NM
n =: (ϑ̂′n, φ̂′3n)′ = arg min lNM

n (ϑ, φ) (3.10)

where lNM
n (ϑ, φ) is defined in (3.5). Next, we discuss the asymptotic properties of

the NM-QMLE θ̂NM
n .The following condition is needed.

A5’. H2 (The limit of the second derivative of lNM
n (θ0)) is a positive

definite matrix.

The following theorem gives asymptotic properties of the NM-QMLE θ̂NM
n .

Theorem 3. Suppose G is identifiable and nondegenerate. If assumptions A1, A2,
A4, A5′ and A6 hold, it follows that

(i) There exists a fixed open neighborhood N(ζ0) of ζ0 such that lNM
n (ζ) has a

unique minimum ζ̂NM
n in N(ζ0) with probability tending to one as n →∞ and ζ̂NM

n

is consistent. Furthermore, ζ̂NM
n is asymptotically normal

√
n(ζ̂NM

n − ζ0)
L→ N

(
0,H−1

2 H1H
−1
2

)
.

Here H1 is the asymptotic variance of
√

n∂lNM
n (θ0)

∂ζ and H2 is the same as assumption
A5’.

(ii) If γ0 in assumption A1 is strictly positive, the results in (i) hold for lNM
n∗ (ζ).

4 The asymptotic efficiencies of G-QMLE and NM-QMLE

From Theorem 2, we have that the ratio of the asymptotic variances between
φ̂2n and φ̂1n are ER = 4τ2/(Eε4

t − 1). Therefore, as long as the ER is smaller
than 1, the NM-QMLE is more efficient than the G-QMLE. However, it is not easy
to get the theoretical value of ER. Our simulation results below indicate that the
heavier the true density of the innovations εt, the more efficient the NM-QMLE.
we present numerical evidence on the performance of asymptotic efficiencies of the
proposed G-QMLE and NM-QMLE through simulation studies. The data are gen-
erated from the non-stationary TGARCH(1,1) model (2.1) with the true parame-
ter φ0 = (0.001, 0.1, 0.3, 1, 0.01)′. In all experiments, we use the sample size n =
1000 with 2000 replications. For the distribution of innovation εt, we consider
the standard Gaussian distribution, the skewed normal-mixture distribution with
θ0 = (0.2, 1, 2, 1)′ and the generalized error distribution with shape parameter 3.
Table 1 gives the ratio of the asymptotic variances of NM-QMLE and G-QMLE. As
expected, the NM-QMLE gets more efficient than G-QMLE when the distribution
of εt becomes more skewed and more heavy-tailed.
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Table 1: The variance ratio

Distribution (a) (b) (c)
ER 1.0849 0.7775 0.7694
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