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Abstract

In this paper, we consider the problem of estimating the shape and scale parameters and
predicting the unobserved removed data based on a progressive type II censored sample from
the Weibull distribution. Maximum likelihood and Bayesian approaches are used to estimate
the scale and shape parameters. The sampling-based method is used to draw Monte Carlo
(MC) samples and it has been used to estimate the model parameters and also to predict the
removed units in multiple stages of the censored sample. A real data set is presented and
analyzed for illustrative purposes and Monte carlo simulations are performed to study the
behavior of the proposed methods.

Keywords: Maximum likelihood estimation, Bayes estimation, Bayes prediction, Monte Carlo
simulation.

1 Introduction

In the last few years progressive censoring scheme has received considerable attention in the
literature. This scheme allows one to remove experimental units at points other than the terminal
point of the experiment. It can be described as follows. Under this general censoring scheme,
n units are placed on a life-testing experiment and only m(< n) are completely observed until
failure. The censoring occurs progressively in m stages. These m stages offer failure times of
the m observed units. At the time of the first failure (the first stage) X1:m:n, r1 of the n − 1
surviving units are randomly removed (censored) from the experiment. Similarly, at the time of
the second failure (the second stage) X2:m:n, r2 of the n − 2 − r1 surviving units are randomly
removed (censored) from the experiment. Finally, at the time of the mth failure (the mth stage)
Xm:m:n, all the remaining rm = n−m−(r1 +r2 + ...+rm−1) surviving units are removed from the
experiment. We will refer to this as progressive type II censoring scheme (r1, r2, ..., rm). Notice
that this scheme includes the type II censoring scheme (r1 = r2 = ... = rm−1 = 0, rm = n −m)
and complete sampling scheme (r1 = r2 = ... = rm = 0).

Here, the sampling-based technique is applied to Bayesian inference for estimating the unknown
parameters as well as predicting the unobserved removed units based on progressive type-II
censored data from Weibull distribution (WE) distribution. The WE distribution with parameters
α and λ > 0 has the cumulative distribution function (cdf)

F (x|α, λ) = 1− e−λxα
, x > 0, α, λ > 0, (1)

and probability density function (pdf)

f(x|α, λ) =

{
αλxα−1e−λxα

if x > 0,

0 if x ≤ 0,
(2)
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respectively. Here α > 0 and λ > 0 are the shape and scale parameters. From now on, the
WE distribution with the shape and scale parameters α and λ will be denoted by WE(α,λ). A
detailed discussion of the WE distribution has been provided by Johnson et al. (1995).

Let X1:m:n, X2:m:n, ..., Xm:m:n denote the above mentioned m progressively type II censored sam-
ple with progressive censoring (r1, r2, ..., rm). In recent years, several articles on statistical infer-
ence for various distributions under this censoring scheme have appeared. See, for example, Ng
(2005), Balakrishnan and Kateri (2008), Basak et al. (2006), Kim et al. (2011) and Kundu and
Raqab (2012). In this current work, we extend the work of Kundu and Raqab (2012) to include
the progressive censoring type II data from the two-parameter WE distribution.

2 Maximum likelihood estimation

Let X = (X1:m:n , X2:m:n , ... , Xm:m:n) with X1:m:n ≤ X2:m:n ≤ ... ≤ Xm:m:n denote the progres-
sively type II censored sample of size m from a sample of size n drawn from a WE(α, λ) with
cdf and pdf given in (1) and (2). The likelihood function based on a progressive type-II censored
sample from WE(α, β) is given by

L(α, λ|x) ∝ αmλm

(
m∏

i=1

xα−1
i:m:n

)
e
−λ

mP
i=1

(1+ri)x
α
i:m:n

. (3)

By differentiating the natural logarithm of the likelihood function with respect to λ and α and
equating the resulting terms to zero, we get

m

α
+

m∑

i=1

ln xi:m:n −




m
m∑

i=1
(1 + ri)xα

i:m:n




m∑

i=1

(1 + ri)xα
i:m:n lnxi:m:n = 0, (4)

and

λ =
m

m∑
i=1

(1 + ri)xα
i:m:n

. (5)

The MLE of λ can be obtained using the Newton-Raphson method by solving the non-linear
Eq.(4). Once the MLE of α is computed, it is substituted into Eq.(5) to obtain the MLE of
λ. For more details about the existence and uniqueness of these MLEs and uniqueness, see
Balakrishnan and Kateri (2008).

3 Sample-based estimation

In this section, we use sample-based technique to obtain the Bayes estimates (BEs) of α and
λ based on progressive censoring data. A natural choice for the priors of α and λ would be to
assume that the two quantities are independent and their densities are of the following forms:

π1(λ|a0, b0) =
ba0
0

γ(a0)
λa0−1e−b0 λ and π2(α) is log-concave, (6)

where a0 and b0 are chosen to reflect the prior knowledge about λ and the support of α is (0,∞).
For more details, see Kudnu (2008).

By combining (3) and (6), we obtain the joint posterior of α and λ as

π(α, λ|data) ∝ αmλm+a0−1(
m∏

j=1

xα−1
j:m:n)e−λ(b0+

Pm
j=1(1+rj)x

α
j:m:n) π2(α). (7)
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In light of the progressive censoring data, the above posterior model is essentially an updated
version of our prior knowledge about α and λ which is given in (6). The conditional posterior

distribution of λ given α (and the data) is Gamma(a0 + m, b0 +
m∑

i=1
(1 + ri)xα

i:m:n), while the

conditional posterior distribution of α given the data is

π(α|data) ∝ αm
m∏

j=1

xα−1
j:m:n

(
b0 +

m∑

i=1

(1 + ri)xα
i:m:n

)−(a0+m)

π2(α), (8)

which is log-concave if the prior density π2(α) is log-concave.

The sample-based technique using the conditional posterior distributions can be used to obtain
the BEs of θ = α or λ under squared error loss function L1, absolute error loss function L2 and
linear-exponential (LINEX) function L3.

The BE of any function of α and λ (say θ) under L1 is expressed as

θ̂B1 = Eposterior(θ|data) =

∞∫

0

∞∫

0

θ π(α, λ|data) dα dλ.

Under L2, the BE θ̂B2 will be the median of the posterior distribution of θ, i.e.

θ̂B2 = Medposterior(θ|data).

Under L3, then for any ν 6= 0 the BE θ̂B3 of θ will be

θ̂B3 =
[
Eposterior(θ−ν |data)

]− 1
ν =

[∫ ∞

0

∫ ∞

0
θ−νπ(θ|data) dα dλ.

]− 1
ν

.

Consequently, we develop simulation procedure to generate samples from the posterior distribu-
tion of α and λ. The MC samples (αl, λl) are generated using the following algorithm:

• Step 1: Generate α1 from the log-concave density function π(α|λ, data), Eq.(9), using the
method proposed by Devroye(1984).

• Step 2: Using the current α value, sample λ1 from the posterior density function of λ given
α and data, which is G(a0 + m, b0 +

∑m
j=1, (1 + rj)xα

j:m:n).

• Step 3: Repeat steps 1 and 2 M times and obtain MC samples {(αi, λi); i = 1, 2, ..., M}.

These resulting samples (αl, λl) are used to approximate the BEs of the parameters and also to
construct the corresponding simulated confidence intervals.

4 Sample-based prediction

In many life testing and reliability situations, it is desirable to predict the unobserved or censored
observations from the early observed observations in the same sample. In this section, we consider
the problem of predicting the censored observations in the progressive censored sample from
the WE distribution. Mainly, our interest is in the posterior density of the kth order statistic
Yk:rj

(k = 1, 2, ..., rj ; j = 1, 2, ..., m) based on observed progressive type-II censored sample, X =
(x1:m:n , x2:m:n , . . . , xm:m:n) with x1:m:n ≤ x2:m:n ≤ ... ≤ xm:m:n. The posterior predictive
density of Yk:rj given the observed censored data X is

p(yk:rj |data) =
∫ ∞

0

∫ ∞

0
fYk:rj

|X(yk:rj |α, λ) π(α, λ|x) dα dλ, yk:rj > xj:m:n.
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Here fYk:rj
|X(yk:rj

|α, λ) is the conditional density of Yk:rj
given α, λ and the data X = x. Using

the Markovian property of progressively type-II right censored order statistics (Balakrishnan and
Aggrawala, 2000) and the fact that the conditional density of Yk:rj

|xj:m:n is just the conditional
distribution of the kth order statistic obtained from a sample of size rj from G(y) = [F (y) −
F (xj:m:n)]/[1− F (xj:m:n)], y > xj:m:n, we have

fYk:rj
|data(yk:rj |α, λ) = c αλ

k−1∑

i=0

(−1)k−i−1

(
k − 1

i

)
yα−1

k:rj
e
−λ(rj−i)(yα

k:rj
−xα

j:m:n)
. (9)

From (7) and (9), the posterior predictive density of Yk:rj given the observed censored data is

p(yk:rj |data) = c αλ

∫ ∞

0

∫ ∞

0

k−1∑

i=0

(−1)k−i−1

(
k − 1

i

)
yα−1

k:rj

e
−λ(rj−i)(yα

k:rj
−xα

j:m:n)
π(α, λ|data) dα λ. (10)

Clearly, the form of the posterior predictive density in (10) is not attractable and the computation
of the predictive Bayes estimates E(Yk:rj

|data) is not an easy task. Consequently, we use the MC
samples described in Section 3 to generate samples from the predictive distributions. Under the
square error loss function L1, the Bayes predictor (BP) of Y = Yk:rj

can be obtained as

Ŷ BP1
k:rj

=
c

M

M∑

l=1

k−1∑

i=0

(−1)k−i−1

(
k − 1

i

)
e−λl(i−rj)x

αl
j:m:n ×

Γ
(

1
αl

+ 1, λl(rj − i)xαl
j:m:n

)

λ
1

αl
l (rj − i)

1
αl

+1
, (11)

where
Γ(a, c) =

∫ ∞

c
xa−1e−x dx, a > 0, c > 0,

is the incomplete gamma function. Under L2, the corresponding sample-based predictor of Y =
Yk:rj , denoted by Y BP2

k:rj
, is the median of the posterior predictive density of Y = Yk:rj , Eq.(11),

which is obtained by solving the following equation with respect to Y BP2
k:rj

c

M

M∑

l=1

k−1∑

i=0

(−1)k−i−1

(
k − 1

i

)
× e

−λl(rj−i)
�
(Ŷ

BP2
k:rj

)αl−x
αl
j:m:n

�

rj − i
=

1
2
. (12)

Similarly, under the LINEX loss function L3 with ν 6= 0, the corresponding sample-based predictor
Y BP3

k:rj
of Yk:rj is obtained to be

Ŷ BP3
k:rj

=


 c

M

M∑

l=1

k−1∑

i=0

(−1)k−i−1

(
k − 1

i

)
e−λl(i−rj)x

αl
j:m:n ×

Γ
(
1− a∗

αl
, λl(rj − i)xαl

j:m:n

)

λ
−a∗

αl
l (rj − i)1−

a∗
αl



− 1

a∗

.

(13)

Another important aspect of prediction is to construct a two-sided interval for Y = Yk:rj (k =
1, 2, . . . , rj ; j = 1, 2, . . . ,m). To obtain prediction bounds on Y = Yk:rj (k = 1, 2, . . . , rj ; j =
1, 2, . . . , m), we need to find the predictive survival function of Y = Yk:rj at any point y > xj:m:n.
Based on Eq.(9), the survival function of Y = Yk:rj is defined by

SY |data(y|α, λ) = c
k−1∑

i=0

[
(−1)k−i−1

(
k − 1

i

)
e−λ(rj−i)(yα−xα

j:m:n)

rj − i

]
. (14)

By using the MC samples {(αl, λl); l = 1, 2, ..., M}, the simulated estimator for the predictive
survival function of Y = Yk:rj under L1, L2 and L3 can be obtained similarly. A (1−β)% simulated
prediction interval (PI) of Y = Yk:rj , under different loss functions L1, L2 and L3, can be found
accordingly.
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5 Data analysis and numerical comparisons

In this section, we present the analysis of two real data sets using progressively type II censored
data from WE distribution and conduct a simulation study to examine the performances of the
sample-based estimates and predictors of the removed units of the censored sample.

5.1 Data analysis

Example (real data): In this example, we analyze the times to failure of live specimens
which were subjected to progressively censored aging tests on XLPE insulated cable models
under combined thermal-electrical stresses at 12 kV and 600C. Here, live specimens were
removed at selected times and/or at the time of breakdowns. The progressively censored
sample was taken as follows:

i 1 2 3 4 5 6

ri 2 1 3 1 3 2
yi 445 479 489 607 692 969

Montanari and Cacciari (1988) presented several methods for estimating the parameters
of the WE distribution as an appropriate fitted model for the aging times. Predictions of
the lifetime lengths of the removed units in multiple stages of the progressively censored
sample, are of natural interest in this context. Using the iteration procedure described in
Section 3, we obtained the sample-based estimates under square error loss function L1 for
the parameters as follows:

α̂B1 = 2.6318, λ̂B1 = 0.9880,

and 95% confidence intervals for α and λ, were determined to be respectively, (2.2266, 2.8061)
and (0.4010, 1.7880). The simulated Bayes predictive estimates and 95% PIs for Yk:rj

are
presented in Table 2 with r1 = 2, r2 = 1, r3 = 3. It is observed from Table 2 that the Bayes
PIs under LINEX loss function perform well when compared with the ones under square
error loss and absolute error loss functions in terms of the interval length criterion.

Table 2: Prediction values and 95% PIs for Yk:rj

Yk:rj L1 L2 L3(ν = 0.1) L3(ν = 0.5) L3(ν = 1.0)

Y1:r1 807 759 765 751 735
(463,1426) (469,1435) (463,1278) (463,1226) (463,1166)

Y2:r1 1190 1144 1132 1111 1086
(620,2028) (633,1833) (620,1746) (620,1663) (620,1576)

Y1:r2 1015 955 948 926 899
(510,1876) (519,1963) (510,1655) (510,1589) (510,1517)

Y1:r3 744 700 718 709 699
(499,1234) (500,1273) (499,1114) (499,1075) (499,1032)

Y2:r3 988 954 953 940 925
(588,1591) (591,1501) (588,1399) (588,1337) (588,1266)

Y3:r3 1310 1267 1261 1244 1222
(754,2118) (779,2013) (752,1815) (752,1704) (751,1578)

5.2 Numerical comparisons

To examine the performances of the sample-based estimates and predictors, we carried out
an MC simulation. For a particular n,m and a censoring scheme, we generate a progressive
censored sample from the WE distribution with α = 2 and λ = 1 using the algorithm
proposed by Balakrishnan and Aggarwala (2000). In each case, we compute the MLEs and
the BEs of α and λ under different loss functions. We replicate the process 5000 times and
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compute the average bias and mean square error (MSE) of the respective estimate. The
results are reported but not displayed here. It can be seen, from the numerical results, the
BEs perform better than the MLEs, both in terms of bias and MSE.

It can also be noted that the performances of the MLE as well as the BE are sensitive to
both sample size and sampling scheme. While the performances of BEs of α are generally
close under L1 and L3, the BEs of λ under L2 perform better than their counterparts under
L1. Further, under LINEX loss function L3, the corresponding estimates of λ compete all
other estimates in the most considered cases.

For the computations of predictors, we have obtained the simulated point predictors. In the
prediction method (method 1, say), we substitute the MC samples (αl, λl), l = 1, 2, ...,M
into the posterior predictive density of Yk:rj

given the observed censored data which is given
in (10) and then obtain an approximate predictor of Yk:rj

. Another suggested method (call
it method 2), is to substitute the MC samples into the conditional density (9) and then
simulate Y l

k:rj
, j = 1, 2, ..., M from the conditional distribution of Yk:rj

given data and

αl, λl. The resulting simulated values Y 1
k:rj

, Y 2
k:rj

, ..., Y M
k:rj

will be a simulated sample from
the posterior distribution. Based on this simulated sample, it is evident that method 1
is highly efficient relative to method 2; the performances of its predictors in the sense of
MSE are better than the ones obtained using method 2.
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