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Abstract

In multicentre studies patients are typically clustered within centres and are likely to be correlated.
Typically, random effects logistic models are fitted to clustered binary outcomes. However, limited work
has been done to assess the discriminatory ability of these models: the ability of the model to distinguish
between low-and high-risk patients. The C-index has been used to assess discrimination in the standard
logistic model. For clustered data, the näıve use of the standard C-index may lead to misleading
conclusions regarding the model’s discriminatory ability. This paper extends the standard C-index to
use with random effects logistic models, resulting in an ‘Overall’ C-index and a Pooled cluster-specific
C-index. Both indices have individual interpretation. The ‘Overall’ approach can produce two different
values for the C-indices depending on type of predictions: conditional and marginal predictions. The
methods are illustrated using real data on patients following heart valve surgery and their performances
are investigated using simulation studies with several scenarios related to clustered data.
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1 Introduction

Random effects logistic models [1] are commonly used to analyse clustered binary data from
multi-center studies. However, limited work has been done to assess the discriminatory ability of
these models: the ability of the model to distinguish between low-and high-risk patients [2]. The
C-index [3] is commonly used to assess the discriminatory ability of standard logistic models.
For clustered data, the näıve use of the standard C-index may lead to misleading conclusions
regarding the model’s discriminatory ability. The näıve approach assesses the effects of the fixed
predictors only, and the discriminatory ability may change if clustering effects are considered in
addition to the effects of the fixed predictors. Furthermore, assessing the model’s performance
within each cluster may be of interest, particularly to identify outlying clusters. This paper
extends the standard C-index to use with random effects logistic models. The paper begins with
a brief description of the proposed C-index for independent binary outcomes, then discusses the
estimation of these measures for clustered data. A simulation study is conducted to evaluate
the performance of the new measures under various clustered data scenarios. The methods are
illustrated using data on patients who had undergone heart valve surgery.

2 C-index for standard logistic regression

2.1 The model

Let Yi (i = 1, . . . , N) be a binary outcome (0/1)from Bernoulli(1, πi) with πi = Pr(Yi = 1).
The logistic regression model can be defined as

logit[Pr(Yi = 1|xi)] = log
( πi

1− πi

)
= βTxi.
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The term ηi = βTxi is known as the ‘prognostic index’ (PI). The predictive form of this model
can be written as

π(β|xi) =
1

1 + exp[−βTxi]
.

Predictions from the model depend on the estimate of βT , which is typically obtained by the
method of maximum likelihood [4].

2.2 The C-index for logistic model

The C-index is numerically identical to the area under the receiver operating characteristic
curve (AUC) [3]. It equals to the proportion of pairs in which the predicted event probabil-
ity is higher for the subject who experienced the event of interest than that of the subject
who did not experience the event. For a pair of subjects (i, j), where i and j correspond to
those who experienced the event and those who did not respectively, with event probabilities
{π(β|xi), π(β|xj)}, the C-index can be defined as

C = Pr[π(β|xi) > π(β|xj)|Yi = 1 & Yj = 0],

which is equivalent to

C = Pr[βTxi > β
Txj |Yi = 1 & Yj = 0].

The above statistic can be estimated based on the Mann-Whitney U statistic [3].

Let η
(1)
i = βTxi|Yi = 1 and η

(0)
j = βTxj |Yj = 0 be PI derived by the model for subject i with

event and for subject j without event, respectively. Further, let N1 and N0 be the number of
events and non-events, respectively. Considering all pairs (i, j), the C-index can be estimated
by analogy to the U statistic formulation [3] as

C =
1

N1N0

N1∑
i=1

N0∑
j=1

I
(
η
(1)
i , η

(0)
j

)
, (1)

where

I
(
η(1), η(0)

)
=


1 if η(1) > η(0)

0.5 if η(1) = η(0)

0 if η(1) < η(0)
.

The value of C ranges between 0.5 and 1: a value of 0.5 indicates that the model has no ability
to discriminate between low and high risk subjects, whereas a value of 1 indicates that the
model can perfectly discriminate between these two groups.

3 C-index for clustered data

We propose two approaches to calculate C-index in the clustered data setting, which results
in an ‘overall’ and a ‘pooled cluster-specific’ indices. In the ‘overall’ approach, one calculates
the C-index from a comparison of subjects within and between clusters, and the resulting
C-index assesses the overall predictive ability of the model. In the ‘pooled cluster-specific’
approach, one calculates the validation measure for each cluster based on its original definition
for standard logistic model along with a measure of precision. These measures are then pooled
across clusters using the random-effects summary statistic method often used in meta analysis
[5]. This approach yields a weighted average of the cluster-specific values, referred to as a
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‘pooled estimate’. The ‘pooled cluster-specific’ measure assesses the predictive ability of the
predictors whose values vary within clusters.

3.1 The random effect logistic model for clustered data

Let Yij be a binary outcome (1/0) for the ith subject in the jth cluster of size nj (i =

1, . . . , nj ; j = 1, . . . , J) and
∑J

j=1 nj = N . It is assumed that Yij ∼ Bernoulli(πij), where
πij = Pr(Yij = 1) . The random-intercept logistic model is an extension of the standard logistic
model with an additional cluster-specific random effect uj . Typically ujs are N(0, σ2u). The
random-intercept logistic regression model is given by:

logit[Pr(Yij = 1|uj ,xij)] = log
( πij

1− πij

)
= βTxij + uj ,

The predictive form of the random effect logistic model for subject i in cluster j is given by

π(β|uj ,xij) =
exp[η(β,xij , uj)]

1 + exp[η(β,xij , uj)]
,

where η(β,xij , uj)=β
Txij + uj is referred to as PI. Predictions from the model depend on the

estimates of the model parameters (βT , σ2u) and the random effect uj . The model parameters
can be estimated using adaptive Gaussian quadrature (AGQ) [6]. Using the estimates of the
model parameters, the random effect uj for the jth cluster can be obtained by empirical Bayes
approach [7]. The above predictions based on uj are called conditional predictions. Marginal
predictions, πij(pa), can be made by integrating the conditional prediction π(β|u,x) over the
(prior) random effects distribution.

3.2 C-index for random effect logistic model

For a pair of subjects (i, k) from clusters (j, l) respectively, where i and k correspond to subject
who with event and those without event respectively, with event probability {πij(u), πkl(u)},
the C-index can be defined as

Cre(u) = Pr[πij(u) > πkl(u)]⇔ Pr[ηij(u) > ηkl(u)].

This applies to all possible pairs (i, k) in the data, where a pair may consist of subjects from the
same cluster or from different clusters. If subjects are from different clusters, the cluster-specific
random effect u values contribute in determining whether a pair is concordant and in Cre(u),
even if both subjects have the same predictor values. The random effects u however do not
contribute in determining a concordant pair if both subjects are from the same cluster, as they
share the same value of the random effect. Similarly, based on population average probabilities
{πij(pa), πkl(pa)}, the C-index can be defined as

CPA = Pr[πij(pa) > πkl(pa)]⇔ Pr[ηij(pa) > ηkl(pa)].

3.2.1 The Overall C-index

Let η
(1)
ij (u) = ηij(u)|Yij = 1 be PI for the ith subject with an event from the jth cluster,

derived from πij(u). Similarly, let η
(0)
kj (u) = ηkj(u)|Ykj = 0 be PI for the kth subject without

an event from the jth cluster. Let n1j and n0j be the number of subjects with an event and
without an event respectively in the jth cluster. The total number of subjects with an event
is N1 =

∑
j n1j , and the total number of subjects without an event is N0 =

∑
j n0j . Further,
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let J1 and J0 be the total number of clusters with at least one subject with an event and one
without an event, respectively. Note that J ≤ (J1 + J0) ≤ 2J .

Extending equation (1), the C-index for clustered data can be defined as

Cre(u) =
1

N1N0

J∑
j=1

J∑
l=1

nj∑
i=1

nl∑
k=1

I
(
η
(1)
ij (u), η

(0)
kl (u)

)
, (2)

where I(.) can be defined similarly as in eq(1). The C-index based on πij(pa) can be obtained

using the same approach to that described in equation (2) but by replacing η
(1)
ij (u) and η

(0)
kl (u)

by the corresponding prognostic indices derived from πij(pa). The resulting C-indices is denoted
by CPA.

3.2.2 Pooled cluster-specific C-index

Let Ĉj (j = 1, . . . , J) be the estimate of C-index for the jth cluster obtained using its standard
definition, and σ̂2j be the corresponding estimated variance. The weighted average (pooled
estimate) of the cluster specific estimates can be calculated as

ĈP = w̄−1
J∑

j=1

Ĉjŵj , (3)

where ŵj = 1/(σ̂2j + τ̂2), w̄ =
∑J

j=1 ŵj , and τ̂2 is the estimate of the between cluster variance
and can be obtained as

τ̂2 = max

{
0,

[∑J
j=1 âj(θ̂j − θ̄)2

]
− (J − 1)∑J

j=1 âj −
∑J

j=1 â
2
j/
∑J

j=1 âj

}
,

where âj = 1/σ̂2j and C̄ =
∑J

j=1 âjĈj/
∑J

j=1 âj .

4 Simulation study

4.1 Simulation design

The properties of the C-indices such as bias and coverage were investigated by a simulation
study. Both development and validation data were simulated from a true model based on
random intercept logistic model. Prognostic models were developed using the simulated de-
velopment data and then evaluated using the corresponding simulated validation data. The
properties of the C-indices were investigated in a range of scenarios. A total of four ICC val-
ues such as 0%, 5%, 10%, and 20% were considered, to mimic scenario with different levels of
clustering. Under each ICC value, development datasets each with 100 clusters of size 100 were
generated. For each development set, validation datasets from several scenarios were generated.
These include (i) 10 clusters of sizes 10 and 300, and (ii) 100 clusters of sizes 10, 30, and 100.
For each of the development and validation scenarios, 500 datasets were generated.

For a sample of size N with J clusters, the predictor value xij for the ith subject in the jth
cluster (i = 1, . . . , nj ; j = 1, . . . , J) was generated from N(0, 1), and the true random effects
uj were from N(0, σ2u). Then the outcomes yij were generated from the Bernuolli distribution
with probability calculated from the true random-intercept logistic model using

π(β0, β1|xij , uj) =
exp[η(β0, β1, xij , uj)]

1 + exp[η(β0, β1, xij , uj)]
. (4)
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As X ∼ N(0, 1), β1X ∼ N(0, β21), and therefore η(β0, β1, xij , uj) follows N(β0, β
2
1+σ2u), assuming

one subject per cluster. To simulate data under different ICC scenarios, the values of σ2u
were varied keeping the total predictive variability fixed to 1.42, and β1 was determined from
β21 +σ2u = 1.42. In addition, β0 was set to a fixed value of -1.8 to generate data with a prevalence
of approximately 20% for each of the ICC scenarios.

Table I: Bias and coverage of Overall C-indices: true value=0.806
Bias Cov for 95% CI

C-indices # clusters Size \ICC 0% 5% 10% 20% 0% 5% 10% 20%

10 0.806 0.806 0.809 0.811 88 86 82 74
10 300 0.806 0.806 0.806 0.806 90 90 89 91

Cre(u) 10 0.806 0.807 0.809 0.810 88 83 76 72

100 30 0.806 0.806 0.807 0.808 89 88 86 84
100 0.806 0.807 0.806 0.807 90 91 89 91

10 0.806 0.805 0.794 0.786 88 83 78 72
10 300 0.806 0.805 0.793 .785 90 86 80 73

CPA 10 0.806 0.802 0.793 0.795 89 83 78 70
100 30 0.806 0.804 0.795 0.787 89 85 76 72

100 0.806 0.804 0.796 0.787 90 84 78 70

4.2 Results

When there was no clustering in the data (ICC=0%), the C-indices in general showed ap-
proximately unbiased estimates for all simulation scenarios (Table I). The C-index based on
conditional prediction, Cre(u), provided unbiased estimates when the clusters were large. The
reason for bias in Cre(u) when the clusters are small is possibly due to the poor estimation of
the random effects. When the empirical Bayes estimates of the random effects were replaced
by their true values in the calculation of Cre(u) while still using the estimates of the fixed
predictors, Cre(u) showed a reasonably good performance even for the small clusters (result
not shown). For all simulation scenarios, CPA showed substantial negative bias (but of equal
amount) in the presence of clustering, and the bias increased with increasing ICC values. In
the presence of clustering (ICC > 0%), CPA showed substantial negative bias in the presence
of clustering, and the bias increased with increasing ICC values. This is because CPA ignore
the actual contribution of the random effects and therefore underestimate the true value. It
is seen from Table II, CP were unbiased when clusters were large, but it showed large bias for
small clusters. The possible reason for bias in CP when the clusters are small is as follows. The
prevalence of the outcome was set at 20% for the simulations. However, the number of events
varied between the clusters for high values of the ICC. The minimum number of events required
per cluster to calculate C-index is one. When calculating C-index based on small clusters, if

Table II: Bias and coverage of Pooled C-index CP : true values=0.806, 0.785, 0.744, 0.722
Bias Cov for 95% CI

C-indices # clusters Size \ICC 0% 5% 10% 20% 0% 5% 10% 20%

10 0.798 0.756 0.723 0.701 78 75 78 77
10 300 0.806 0.785 0.743 .721 90 90 89 90

CP 10 0.795 0.778 0.723 0.702 76 73 75 72
100 30 0.804 0.783 0.738 0.719 86 86 86 87

100 0.806 0.785 0.743 0.722 90 90 89 91
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the number of events for a cluster was too low, the cluster was ignored. Thus the calculation
of the ‘pooled estimate’ was often based on a reduced number of clusters, resulting in bias.

5 Application

The new C-indices were illustrated using a dataset of patients who underwent heart valve
surgery. The results showed that both the ‘overall’ and ‘pooled cluster-specific’ indices have a
meaningful interpretation in a clustered data setting. Details of the data and results were not
shown for space constraint.

6 Conclusions

This paper has described an adaptation of the C-index for use with models for clustered binary
outcomes. Two approaches are proposed: an ‘overall’ and a ‘pooled cluster-specific’ indices.
The ‘Overall’ approach produces two different values depending on the model predictions π̂ij(u)
and π̂ij(pa). The properties of the C-indices were evaluated by a simulation study in a range of
clustered data scenarios. The simulation results showed that Cre(u) showed reasonable perfor-
mance when there was clustering in the data and the clusters were reasonably large, possibly
due to the fact that the random effects were better estimated in larger clusters. CPA performed
poorly when there was a moderate level of clustering in the data, because they ignore the effect
of clustering. The ‘pooled cluster-specific’ index, CP , showed bias when the cluster sizes were
small. This is because this approach ignores information from some of these clusters due to
lack of events to calculate the index. In general, both the ‘overall’ and ‘pooled cluster-specific’
indices are recommended to use to assess the predictive ability of the cluster-data model. How-
ever, one needs to check whether the clusters are sufficiently large (for example, greater than
30) and each of these contains at least two events before using the ‘pooled’ measures.
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