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Abstract

  Model-based clustering including k-means clustering is widely used method for 

unsupervised classification. In model-based clustering, data are assumed to be 

generated by a mixture model, and clustering will be done with parameters of 

the model. Though we regard all the parameters of the model, the result of 

model-based clustering may vary by initial values of parameters. However, if too 

strong initialization is imposed, the clustering cannot get over from the initial 

status. A suggestion for this issues is using non-parametric initialization such as 

centroid of grid cell and directions of points in the cell. The non-parametric 

initialization can induce the clustering algorithm to stable solution.

Key words

  model-based clustering; Mahalanobis distance; non-parametric initialization; 

1. Introduction

  On model-based clustering, observations are assumed to be generated by a mixture 

model. Then clustering will be done based on parameters in the mixture model. The 

simplest model-based clustering method is K-means clustering which is widely used for 

unsupervised classification. However, the clustering uses only Euclidean distances of 

observations from each centroid to allocate each observation to proper cluster  
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disregarding the other parameters of model. In this paper, general model-based clustering 

will be introduced, specifically for gaussian mixtures of multivariate normal distribution. 

In section 2, a brief overview for multivariate normal distribution based clustering using 

Mahalanobis distance will be given with general clustering algorithm. 

  It is well-known fact that results of model-based clustering depend on initial values 

of parameters such as cluster mean and variance. I will show that initialization affects 

the result of clustering significantly. In section 3, to solve this initialization problem, 

non-parametric initialization method using count, grid cell, and direction will be given 

for general -dimensional case. To help understading the algorithm, each step will be 

explained with figures with Sepal.Length and Sepal.Width from iris data. Example of 

the initialization and clustering with whole iris data is going to be shown in section 4. 

Moreover, visualization of results of the clustering by principal variables will be 

suggested in section 5. 

2. Multivariate Normal-Based Clustering

  In model-based clustering, the observations are assumed to be generated by a mixture 

model. In this paper, the model is restricted to multivariate normal distribution. Then 

the density of observation    ⋯   is given as follows.

  
 




 



   

where  is the number of clusters,  is the probability of belonging to the -th 

cluster, and   is multivariate normal distribution with mean  and covariance 

, i.e.

     
   

  exp⊤.

  Therefore, for each cluster, 2 parameters of  and  is given and then, there are 

totally 2× parameters in the model.
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  On the mixture model, Euclidean distance

 
⊤

cannot explain covariance  which is set of scales or correlations of . Therefore, 

Mahalanobis distance

  
⊤

should be applied in model-based clustering.

  Let 
  and 

  be the mean and covariance of -th cluster on the beginning of -th 

step respectively. Also, define 
  be Mahalanobis distance of  from centroid of -th 

cluster, and   be allocated group of  after -th step. Then model-based clustering is 

given as follows.

(Multivariate Nomal) Model-based algorithm

1. Initialize : Set 
  

 ,    where   ⋯ .

2. For each , allocate  to a group  , where    argmax  
3. Update group mean 

  and group covariance 
  of -th repeat with


 

    


   



,  
 

     


   

 
 

 ⊤

.

   Also, replace  with .

4. Repeat step 2 and step 3 until 
  and 

  converges.

  

3. Non-parametric Initialization 

  Model-based clustering algorithm is sensitive to the selection of the initialization. With 

inappropriate initializations, the clustering algorithm may converge to solutions of local 

minimums of the criterion functions. Therefore proper initialization should be suggested 
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for improved results. Besides, with appropriate initialization, efficiency of the algorithm 

is expected to be increased.

  On model-based clustering of multivariate normal distribution, common methods used 

for initialization is random points for cluster centroid, , and  for cluster covariance, 

. Though the initialization can avoid interventions, for example, of strong assumption 

of parametric distributions, insights and striking features of data are also ignored. 

  To adjust intervention and disregard, nonparametric initialization could be suggested. 

Without any model assumption, each initial values of cluster centroids and covariances 

will be suggested by centroids of grid cells and directions of points in the cell 

respectively. 

Grid generating algorithm

1. For each , calculate   
  

.

2. Devide variables   and  respectively to  equidistance intervals 

where   and  have the largest and the second largest range.

Then, the grid of  row and  column is generated.

( equals the number of clusters)

  Let 
  be the maximum of  not greater than upper 95% quantile of , and 


 be the minimum of  not less than lower 95% quantile of . Define a quantile 

range of  as   
 

. Suppose   argmax   ⋯  and 

  argmax   ⋯  , then two  variables   and  have the 

largest and the second largest range. Agha, M.E. and Ashour, W.M. (2012) used 

maximum and minimum of each variables, but both maximum and minimum can be 

exaggerated by a outlier. Therefore excepting the upper and lower 5% observations 

could be robust and proper.
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Figure 1.  Grid generating step for Sepal.Length and Sepal.Width from iris data. First of all, 

observations outside s are neglected(middle), and then divide each  by   

intervals(right).

  After generating the grid,  ×  cells are given and by counting the number of 

observations in each cell, a table   which consists of , counts of  

-th cell also can be calculated. By using the table, initial cells will be chosen and, from 

the information withing the cells, parameter initialization will be done.

  Let a location indicator   is adjacent to   if   ±     or 

     ± . 

Cell selection algorithm

1. Calculate       ⋯  

                where   the number of obs in  th cell.

2. Let   argmax   and   argmax  .
3. Update the table of counts  as   ′,

where ′            

  

4. Repeat  times to get coordinates of -cells       ⋯ 

※If there are same counts, then do selection randomly.
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Figure 2.  Steps of cell selection for Sepal.Length and Sepal.Width.    is selected by  , 

and then    and    are selected by   and   in sequence. Each step is 

visualization(the darker cells are selected cells and lightly shaded cells are the adjacent 

cells of selected cells

  Within the selected  cells, cell centroids will be proposed with , means of 

observations in each cell. Then,  is given as

 


∈ 



   ⋯ 

where  is a cell with coordinates       ⋯  and 

 
 



 ∈  , the number of observations within . Then 

    ⋯  are initial centroids for model based-clustering.
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Figure 3.   are marked as triangles. Namely, triangles are mean points of each cell. 

Observations in shaded region are not concerned in initialization.

  In sequence, direction method will be suggested for initialization for covariance 

matrices of each . Because covariance matrix is a composition of covariances, 

covariance of each pair of variables should be suggested. However, for some 

convenience, variances of variables are fixed to 1, so I will focus on correlation matrix 

rather than covariance matrix. 

  Let 
   

  
 ⋯  

  be -th observation in ,   ⋯ , and  

 
  

  be th and th variables of 
 . Then the direction of  

  
  from the 

cell centroid  , can be defined as 
  , where


 




arccos


    

 
  







× 




arccos


    

 
  




.

Then  ≤
 ≤, and directions of each  

  
  are measured by the angle 


 . 

  Correlation of two variable will be close to +1 if the two variable have same sign 
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Figure 4.  Direction diagram for cell  . 12 observations are on 1st and 3rd quadrant. 

Therefore, with    ,  
  × 


    .

from the mean, and close to –1 if the two variable have opposite signs. Therefore, for 

correlation of 
  

 variable  and  in ,   
  could be suggested as 

follows.

 
  









 



 ≤ ≤  or ≤ ≤ 







  If all the  
  

  are in the 1st and 3rd quadrant with origin  , then 

 
  equals to +1, otherwise, all the  

  
  are in the 2nd and 4th quadrant, then 

 
  equals to –1.  

  could be relatively strong for initialization, for proper 

constant ,  ×  
  would be better. (Although all the observations are in the 1st and 

3rd quadrant, the correlation can not be +1 unless they are in a line.)

  In sequence, 

    ×  
      ⋯  

will be suggested for initial value of covariance matrix of .

   In the end,       ⋯  is a non-parametric initialization for model-based 

clustering
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Sepal.Length Sepal.Width Petal.Length Petal.Width

Sepal.Length 1.00 

Sepal.Width -0.12 1.00

Petal.Length 0.87 -0.43 1.00

Petal.Width 0.82 -0.37 0.96 1.00

Table 1. Correlation matrix of 4 variables from iris data

Figure 5.  Direction diagrams and   for whole iris data with   . Compared with actual 

correlation of 4 variables in iris data (given above), a non-parametric initialization 

  seem to be similar with the correlation.
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4. Example of Model-based clustering with non-parametric Initialization

  Iris data will be used for an example of non-parametric Initialization. 

4.1 Clustering Iris data without “Species”

  There are 4 variables of Sepal.Length(), Sepal.Width(), Petal.Length(), and 

Petal.Width() in the iris data.  and  are the first two variables of large range. 

Suppose  . Then, by cell selection algorithm,  ,  , and  th cells are 

selected where         .

  For the centroid,      ,      , and 

      are given as centroid. For the initialization of covariance 

matrices,  












 
  
   

,  












 
  
   

, and 

 












 
  
   

 are suggeted.

  With just 10 iteration,  and  are converged. (        ,

    , 
    , 

    ,

 











   

  
 



, 











   

  
 



, 











   

  
 



)

  In existing random initialization, initial s are randomly selected from  observation, 

and initial s are set  . Table 2. shows the number of observations in each cluster 

from each 10 clustering. 

  (Because order of clusters could be different in each simulation, index of cluster are 

standardized by increasing order of Sepal.Length)
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Initial obs Cluster 1 Cluster 2 Cluster 3

25, 109, 104 80 87 13

105, 129, 38 50 45 55

7, 77, 21 24 26 100

126, 81, 88 21 53 76

78,117, 51 55 50 45

24, 68, 97 50 15 85

97, 98, 10 82 50 18

52, 8, 110 50 45 55

43, 17, 143 24 26 100

Table 2. Result of 10 clustering with random initialization

  Table 2. says, by initial values of clustering, the outcome could be significantly 

different while non-parametric method give only one solution for a clustering. Though 

we cannot say which method is better by the number of observations in each cluster, 

non-parametric method is much stable than random one.

5. Visualization by Principal Variables

  For -dimensional data, usual approach for visualization is dimension reduction by 

principal component analysis or factor analysis. By the methods, observations can be 

expressed by two main axes which are combinations of variables. These combination 

explains much of variance of variables, however, explanation of themselves would be 

uncertain. Principal variable is a method to deal with this uncertainty. Rather than 

making a few combinations, choosing some variables which have more impact than the 

others would be better. Though explanation power could be reduced, principal variable 

gives clear impression. 
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  In this clustering problem, it is desirable to select principal variables which can tell 

the differences between clusters. Because visualization space is restricted to 

2-dimensional space, generally, two principal variables will be enough to be visualized.

  Let     ⋯  be the final mean and    be final covariance 

of -th cluster. (  is covariance of  and  in -th cluster.) Because only two 

variables are to be chosen, mean and covariance also reduced to 2-dimension.   

Suppose  and  are the chosen variable, and define 
    and 






 


 

 
, reduced mean and covariance with two variables  and . 

  To select principal variables, a proper criterion should be introduced.

  Define

 



 




≠
 

 
⊤

 
 

  .

Then, 
  equals sum of inter-Mahalanobis distances of 

s, each mean of  clusters 

of principal variables  and .

  For all possible  combination of variables of size 2, i.e. for all possible 

combinations of  , calculate 
  and select a combination ′  ′ where 

′  ′ argmax   . 

Namely, two variables which maximize variance between groups will be chosen. The 

next thing is to plot ′  ′ with 
′′  ′ ′  and 

′′

 


′′ ′′

′′ ′′
.

  The visualization is shown below with the example of clustering from 4.1. 
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  (1, 2) (1, 3) (1, 4) (2, 3) (2, 4) (3, 4)

 138.75 880.58 428.97 974.86 525.70 973.27

Table 3. 
  s are calculated for the clustering of iris data from 4.1. Shown  above, 

variable set (2, 3) are selected for principal variables.

Figure 6.  Visualization with two principal variables Sepal.Width and 

Petal.Length from clutering of iris data. The color of points means 

the final cluster each observation is belonging to. The ellipse is 

drawn based on the covariance of each cluster by eigenvalue 

decomposition, but sizes of ellipses do not have meaning. However, 

we can find out different structure of clusters.
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6. Discussions about initialization

6.1 Determining proper constant  of     ×  
 

  As mentioned introduction above, a constant  have to be set. If  is close to 1, 

then initiation of covariance matrix is too strong. But if  is close to 0, it’s same as 

assuming there’s no correlation. i.e.   . Therefore we should set c properly. 

However,  may be vary by data, and no algorithm for setting   is suggested yet.

6.2 Determining proper number of segments on making grid

  Suppose  is proper number of clusters for a certain data. Then, by grid generating 

algorithm,  ×  cells are set. In the  ×  cells, only  cells are chosen for initial 

centroid. Then the ratio of the number of selected cells from total number of cells 

equals to 


. It means for large enough , too many cells are generated. Also for 

small , generating more cells could be better in initialization. For example, for  , 

the ratio equals to 0.5. 2 cells of 4 cells are chosen. But if  , the ratio drops to 

0.25, the half of 0.5. Therefore, with further analysis, upper and lower bound for the 

ratio should be suggested for better initialization.
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7. Conclusion

  Initialization is a issue on the model-based clustering. With proper initial values of 

parameters, the number of iterations can be reduced and also clustering algorithm 

converges to better estimations. But if the initialization is too strong, then the result of 

clustering could be pulled toward initial values, so that it can be ruined. Therefore, one 

should set proper but not heavy initial values. Existing random initialization avoid 

intervening into clustering steps, but also at the same time, miss some inspiration that 

data shows. In this situation, non-parametric initialization gives some implications. 

Non-parametric initial values do not ask heavy calculation. For example, to calculate 

covariance, we need multiple of   calculations. But direction methods ask multiple of 

 calculations giving good suggestion for initial covariance matrix. Thus, non-parametric 

initialization is expected to be effective also for massive data.

  Moreover, by the non-parametric initialization gives a solution of clustering whereas 

random initialization gives totally different clustering by selection of initial values. 

Therefore non-parametric initialization is more stable in comparison with random 

methods.
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