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Abstract

Multivariate data are difficult to handle due to the so-called curse of dimensionality.
Researchers have developed methods for reducing the dimensionality of multivariate data
with help of mathematical transformations. Principal components analysis, factor analysis,
and independent components analysis are examples of such methods that reduce the data
dimension. One of the major drawbacks of these methods is that the resulting dimensions
are difficult to interpret because they are mathematical constructs and are not observed
characteristics of the population units.

A new method for reducing the data dimension by forming groups of highly correlated
dimensions is introduced in this paper. It uses the correlation coefficient as the measure
of association between the dimensions of data elements and forms a partition of these di-
mensions. Since no mathematical transformation is involved, the dimensions continue to be
the same as observed and hence the results are interpretable. How to use the partition for
processing the data further is a question addressed in this paper. An illustrative example
is given to explain and demonstrate the new method, called the Principal Subsets Analysis
(PSA).
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1 Introduction

Multivariate data usually suffer from the curse of dimensionality. As a consequence, either

the data is not utilized to the fullest extent or the analysis is oversimplified in order to make

it comprehensive. In either case, the knowledge hidden in the data is hardly discovered to

a satisfactory level without any ambiguity. The remedy suggested in such situations usually

involves a reduction in data dimension. This may be achieved by principal components analysis

(PCA) or factor analysis (FA). A new method of dimension reduction is proposed in this paper

that partitions the variables in the dataset in such a way that the variables within every partition

set are maximally correlated with one another. The new method selects variables in such a way
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that successive linear relationships involve mutually exclusive sets of variables. These sets are

called principal subsets on the lines of principal components. Each principal subset contains

variables that are maximally correlated with each other. Unlike principal components, principal

subsets are not uncorrelated with one another. Another advantage of the new method is that it

offers an easy interpretation of the results. The principal subsets are obtained by partitioning

the entire set of variables. As a consequence, the variables in every subset are in their original

and natural form, and not in the form of a transformation.

The principal subsets algorithm is developed from the partitional clustering algorithm of

Tayefi and Gore (2013). The only change is that the principal subsets analysis uses the corre-

lation matrix, and not the distance matrix. Section 2 describes all the steps of the principal

subsets analysis algorithm. Section 3 contains illustrative examples to show how the principal

subsets analysis is carried out and how the results are interpreted.

2 Principal Subsets Analysis

Principal Subsets Analysis (PSA) is a non-iterative and non-recursive method of partitioning

the set of variables in a multivariate dataset. The partitioning is done in such a way that,

beginning with two variables that have the highest magnitude of correlation coefficient in a set

initially, another variable is added to the set if one of the variables already in the set has the

largest magnitude of correlation coefficient with the variable under consideration. When none

of the variables in the set satisfies this criterion, formation of the set is complete and another

set is formed by identifying variables that are not yet included in any set and have the highest

magnitude of the correlation coefficient. The new set is formed in the same way, and the process

continues until all variables are included in one of the sets. These sets are called principal

subsets. It may be noted that the proposed method of forming a set of variables ensures that

every set contains at least two variables. Once the principal subsets are identified, there may be

different ways of representing these subsets by one variable each, thereby achieving a reduction

in the dimension of the data. The major difference between principal components analysis

and the proposed principal subsets analysis is regarding the number of variables involved in

the transformations. While the former involves all the variables in the computation of every

principal component, the latter involves only the variables that belong to the particular subset

under consideration.
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3 The PSA Algorithm

The data matrix X is formed by arranging the vectors of observations X1, X2, · · · , Xn as its

rows. The association between two variables is measured by the correlation coefficient between

them. All the correlation coefficients are computed and arranged in the form of the correlation

matrix of order P × P . The correlation matrix R is symmetric positive definite and has unity

along the main diagonal. We use the correlation matrix to partition the set of variables in

to principal subsets. The number and sizes of partition sets are not pre-determined and they

emerge as the partition sets are formed sequentially. Even then, these partition sets are unique

for a given dataset in the sense that rearranging the data by permuting observations and/or

variables does not affect the final result. In this sense, the principal subsets are unique.

The steps of the PSA algorithm are as follows.

Step 1. Initialization.

In every column of the correlation matrix, mark the largest non-diagonal entry, so that every

column has at least one marked entry. Multiple marking is allowed in case of a tie. Ignore the

sign and use only the magnitude for this purpose. For j = 1, 2, · · · , P , let Rj denote the row

that has a marked entry in column number j.

Step 2. Forming a new partition set.

Suppose ri∗,j∗ = maxi,j{ri,j} so that variables Vi∗ and Vj∗ have the highest magnitude of

correlation between them. We initiate formation of a new partition set S = {i∗, j∗} by including

these two variables in the set.

Step 3. Checking completion of partition set.

In the correlation matrix, check if there are any marked entries in rows numbered i∗ and j∗.

If there is no marked entry in either of these rows, then follow Step 4. Otherwise follow Step 6.

Step 4. Completion of a partition set.

The partition set S is complete in the sense that there are no more variables that can be

entered in it. Update the correlation matrix R by removing rows and columns corresponding to

variables in S.

Step 5. Checking for termination of the algorithm.

Check if the correlation matrix has at least two rows and at least two columns. If so, follow

Step 2 to form a new partition set. Otherwise, there are no more variables to partition. Hence,

the algorithm terminates

Step 6. Entering variables in the partition set S.

Let Ci∗ denote the column of the correlation matrix having a marked entry in row numbered

3

Proceedings 59th ISI World Statistics Congress, 25-30 August 2013, Hong Kong (Session CPS103) p.4440



i∗. Add the variable VCi∗ to the partition set S. This procedure is followed for every marked

entry in row numbered i∗.

Step 7. Entering more variables in the partition set S.

Let Cj∗ denote the column of the correlation matrix having a marked entry in row numbered

j∗. Enter the variable VCj∗ in the partition set S. This procedure is followed for every marked

entry in row numbered j∗.

Step 8. Entering more variables in S on the basis of variables entered in Step 6 and Step

7. For every variable numbered k∗ that is entered in the partition set S in step 6 and step 7,

check if there is any marked entry in row numbered k∗ and enter the corresponding variable in

the partition set S.

Step 9. Repeat Step 8 as long as at least one marked entry is found in the correlation

matrix in any row corresponding to a variable already in the partition set S. When there are

no more marked elements, declare completion of the partition set S.

Step 10. Update the correlation matrix R by removing rows and columns corresponding

to variables in the partition set S.

Step 11. The algorithm is complete and has partitioned the set of variables.

4 An Illustrative Example: The Chekin data from Yelp Dataset
Challenge

This example relates to the dataset Chekin from the Yelp Dataset Challenge. The dataset

contains information on the hourly number of chekins. The format of data is such that there are

three entries for every chekin, namely the day of the week, the hour of the day and the number

of chekins. There is no entry if there is no chekin in a specific day-hour combination.

The data is first reformatted to avoid ambiguities and inconsistencies. In the original form,

the dataset has rows of unequal length. This causes a problem in handling data for statistical

analysis. The maximum number of columns is found to be 501. This is reduced to 168 hours in

a week. As a result, the dataset is reduced to have 8282 rows and 168 columns. Every column

denotes a fixed hour of the specific day of the week. Moreover, the successive columns are also

in a chronological order, making it easy to interpret data and results of the analysis.

The principal subsets analysis algorithm partitions the 168 variables into a total of 35 par-

tition sets. These 35 partition sets are called the principal subsets of the given set of variables.

For comparison, we carry out PCA and select the first 35 principal components. The vari-

ances of the first 35 principal components are compared with the variances of the first principal
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component of each of the 35 principal subsets.

The amount of information in the first 35 principal components is 152.1542. In comparison,

the sum of the information contained in the first principal components of the 35 principal subsets

is 139.8152.

In principal subsets, the variables within a subset are correlated. We retain correlations

between variables that belong to the same subset and ignore correlations between variables that

belong to different subsets. This results in a block diagonal matrix as described below.

The correlations between variables belonging to different principal subsets are not present

in this matrix. It is therefore interesting to compare this matrix with the original correlation

matrix in order to find out the effect of defining principal subsets.

The determinant of correlation matrix contains information on mutual dependence among

the variables. More the dependence between variables, smaller is the determinant. The de-

terminant of the original correlation matrix is 1.046126e-133 and the determinant of the block

diagonal matrix is 4.322087e-91 .

It is interesting to note that the principal subsets analysis has reduced the data dimension

from 168 to 35, implying that there is a reduction of almost 80 percent in the data dimension.

However, the amount of information contained in the first 35 principal components is 152.1542,

indicating that the loss of information is not even 10 percent. These two numbers indicate

the effectiveness of the principal components analysis. Further, the principal subsets analysis

produces 35 principal subsets and the sum of the variances of the first principal components of

these 35 principal subsets is 139.8152, which makes it 83.2233 percent of the total information.

Again, even though the principal subsets analysis contains smaller amount of information in

comparison to the principal components analysis, the amount of work in computing principal

subsets is substantially smaller than that required for computing principal components.
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