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Abstracts 

 

For the analysis of square contingency tables, the issues of various symmetry rather 

than independence arise naturally. The point-symmetry (PS) model that indicates the 

structure of point-symmetry of cell probabilities and the marginal point-symmetry 

(MP) model that indicates the structure of point-symmetry of marginal probabilities 

are considered. The quasi point-symmetry (QP) model that indicates the structure of 

point-symmetry of odds ratios is also considered. For these models, the theorem that 

the PS model holds if and only if both the MP model and the QP model hold was 

shown. The purpose of present paper is to give a different proof of this result by using 

the minimum discrimination information (MDI) approach. Also, the MDI estimates of 

the cell frequencies of a square contingency table under hypotheses of some 

point-symmetry are given. Moreover, the associated MDI statistics are given, and the 

relationships between these test statistics are shown. 

 

Keywords: marginal point-symmetry, minimum discrimination information, quasi 

point-symmetry 

 

 

1. Introduction 

Consider a contingency table which has same row and column classifications. For 

such the square contingency table, the issues of various symmetry rather than 

independence arise naturally. For example, the symmetry model indicates the 

symmetry of the cell probabilities, the quasi symmetry model indicates the symmetry 

of the odds ratios, and the marginal homogeneity model indicates the symmetry of the 

marginal probabilities. These models, that indicate the structure of symmetry with 

respect to the main diagonal of the table, are described in e.g., Agresti (2013, p. 426) 

and Bishop, Fienberg and Holland (1975, p. 282). Also, Caussinus (1966) showed that 

symmetry is equivalent to quasi symmetry and marginal homogeneity holding 

simultaneously. 

Wall and Lienert (1976) considered the point-symmetry (PS) model that indicates 

the point-symmetry of the cell probabilities with respect to the center point (or cell) of 

the table. Tomizawa (1985) considered the quasi point-symmetry (QPS) model that 

indicates the point-symmetry of the odds ratios and the marginal point-symmetry 

(MPS) model that indicates the point-symmetry of the marginal probabilities (see 

Section 2) and showed that the PS model holds if and only if both the QPS model and 

the MPS model hold. 

Ireland, Ku and Kullback (1969) proposed the method of estimation referred as 

the minimum discrimination information estimation (MDIE). They obtained the 

MDIEs for the symmetry model and the marginal homogeneity model and also gave a 

different proof of Caussinus’ result as a consequence of MDI approach. We are now 

interested in considering the MDIEs under the hypotheses of some point-symmetry 

and in obtaining a different proof of Tomizawa’s result by using the MDI approach. 

The purposes of present paper are (i) to obtain the MDIEs for the PS model and 

the MPS model, (ii) to give a different proof of Tomizawa’s result and (iii) to show 

the relationships between test statistics. Also in the last section we prove that under 

certain conditions, the QPS model is the closet model to PS when distance is measured 

by the Kullback-Leibler distance. 
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2. Models 

For an r r  square contingency table with same row and column classifications, let 

ijp  denote the probability that an observation will fall in the i th row and the j th 

column of the table ( 1, , ; 1, ,i r j r  ). Wall and Lienert (1976) considered the PS 

model defined by 

 * * ( 1, , ; 1, , ),ij i jp p i r j r    (2.1) 

where the symbol “*” denotes * 1i r i   . This model indicates a structure of 

point-symmetry of the cell probabilities with respect to the center point (when r  is 

even) or the center cell (when r  is odd) in a square table. Tomizawa (1985) 

considered the QPS and MPS models. The QPS model is defined by 

 ( 1, , ; 1, , ),ij i j ijp i r j r      (2.2) 

where * *ij i j  . The QPS model can be expressed as 

 ( ; ) ( * *; * *) ( ; )i j s t j i t s i j s t       , 

where ( ; ) ( ) / ( )i j s t is jt js itp p p p    . Therefore the QPS model has its characterization 

in terms of point-symmetry of odds ratios. The MPS model is defined by 

 *i ip p   and * ( 1, , ),i ip p i r    (2.3) 

where 
1

r

i itt
p p 

  and 
1

r

i sis
p p 

 . This indicates that the row (column) 

marginal distributions are point symmetric with respect to the midpoint of the row 

(column) categories. 

Tomizawa (1985) also gave the decomposition of the PS model such that the PS 

model holds if and only if both the QPS model and the MPS model hold. 

 

 

3. MDIEs for PS and MPS 

Ireland et al. (1969) proposed the method of estimation referred as MDIE (see also 

Bishop et al., 1975, p. 346; Read and Cressie, 1988, p. 34). In this section, we give 

MDIEs for PS and MPS.  

Let ijn  denote the observed frequency of the ( , )i j th cell in a table and let 

/ij ijn n   where ijn n  is the size of multinomial sample. The { }ijp  which 

minimize the discrimination information 

 
1 1

( : ) log
r r

ij

ij

i j ij

p
I p p

 

 , 

subject to the null hypothesis of PS i.e., equation (2.1) may be obtained by minimizing 

 
1

* *

1 1 1 1

log ( ) 1
r r r r

ij

ij ij ij i j ij

i j D i jij

p
p p p p 

   

 
    

 
   , 

with respect to { }ijp  where { }ij  and   are undermined Lagrangian multipliers 

and 

 1

( , ) | 1, , ; 1, , ( ),
2

1 1 1
( , ) | 1, , ; 1, , ; 1, , ( ).

2 2 2

r
i j i j r r is even

D
r r r

i j i j r and i j r is odd

 
  

 
 

         

  

Thus the MDIEs for the PS model are given by 

 
1

2
* *( ) ( 1, , ; 1, , ),PS

ij ij i jp d i r j r     

where 
1

2
* *1/ ( )ij i jd    . Also, we see that the minimum value of ( : )I p   is 

log d . 
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As a similar manner to the case of the PS model, the MDIEs for the MPS model 

i.e., equation (2.3) may be obtained by minimizing 

 
[ /2] [ /2]

* *

1 1 1 1 1 1

log ( ) ( ) 1
r rr r r r

ij

ij i i i i i i ij

i j i i i jij

p
p a p p b p p p


   

     

 
      

 
    , 

with respect to { }ijp  where { }ia , { }ib  and   are undermined Lagrangian 

multipliers and [ ]k  is the greatest integer that is less than or equal to k . It may be 

shown that the minimizing values are given by 

 exp[ ( )] ( 1, , ; 1, , )MPS

ij ij i jp c A B i r j r     , (3.1) 

where 1/ exp[ ( )]ij i jc A B   , 

 

(1 ), (1 ),
2 2

( 1 ), ( 1 ),
2 2

i j

i j

i j

r r
a i b j

A B
r r

a i r b j r

 
     

  
        
  

  

when r  is even, and 

 

1 1
(1 ), (1 ),

2 2

1 1
0 ( ), 0 ( ),

2 2

3 3
( ), ( ),

2 2

i j

i j

i j

r r
a i b j

r r
A i B j

r r
a i r b j r

  
    

 
  

    
 

  
      
 

  

when r  is odd. Also the minimum value of ( : )I p   is logc . The 
MPS

ijp  in (3.1) 

may be determined by using e.g., Newton-Raphson method. 

  

  

4. Relationships between some point-symmetry 

Tomizawa (1985) gave the theorem that the PS model holds if and only if both the 

QPS model and the MPS model hold. We shall show a different proof by using the 

MDI approach. 

We have 

 log log log

PS MPS PS

ij ij ijPS PS PS

ij ij ij MPS
i j i j i jij ij ij

p p p
p p p

p 
    , 

and using 
MPS

ijp  in equation (3.1) 

 log log log

MPS MPS

ij ijPS MPS

ij ij

i j i jij ij

p p
p c p

 
   . 

Thus we can get 

 ( : ) ( : ) ( : )PS MPS PS MPSI p I p I p p   . (4.1) 

As a similar manner to Section 3, we derive the minimum of ( : )MPSI p p  subject to 

the hypothesis of PS. We have 

 
1

2
* *( ) ( 1, , ; 1, , ),PS MPS MPS

ij ij i jp k p p i r j r     

where 
1

2
* *1/ ( )MPS MPS

ij i jk p p  . Now using the MDIEs for MPS in equation (3.1) 

we have 

 
1

2
* *( ) ( 1, , ; 1, , ),PS

ij ij i jp kc i r j r      
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where 
1

2
* *1/ ( )ij i jkc    . So we can see 

PS PS

ij ijp p  for all ( , )i j  and kc d . 

Thus the equation (4.1) may be written as log log logd c k  . 

When the PS model holds, we obviously see that both the QPS model and the 

MPS model hold. So we shall show the PS model hold assuming that both the QPS 

model and the MPS model hold. If q  has MPS, then ( : ) 0MPSI p q   and MPSp q . 

Moreover, since the QPS model i.e., ij i j ijq     where * *ij i j   (equation 

(2.2)) holds, we have 

 

1

2
* *

( : ) ( : ) log log
i jPS PS MPS PS

ij

i j i j

I p q I p p d p
 

 

 
    

 
 

 , 

from equation (4.1). Also, we have 

 

1

2
* *

log 0
i jPS

ij

i j i j

p
 

 

 
 

 
 

 . 

Therefore we can see 

 ( : ) log 0PSI p q d  . (4.2) 

On the other hand, since q  satisfies the structure of both QPS and MPS by 

assumption, we have 

 ( : ) log 0PSI q p d   . (4.3) 

From equations (4.2) and (4.3) we get 

 ( : ) 0PSI p q  , 

which implies PSp q . Namely q  satisfies the structure of PS. 

We also consider the MDI statistics (MDISs) for PS and MPS. By using the 

MDIEs for PS, we can obtain the associated MDIS for PS as follows: 

 2 ( : ) 2 logPSnI p n d  , 

where /ij ijn n   with ijn n . This is asymptotically distributed as 

chi-square distribution with 2 / 2r  (when r  is even) or 2( 1) / 2r   (when r  is 

odd) degrees of freedom under the null hypothesis of PS. 

Also we can get the MDIS for MPS as follows: 

 2 ( : ) 2 logMPSnI p n c  , 

where /ij ijn n   with ijn n . This is asymptotically distributed as 

chi-square distribution with r  (when r  is even) or 1r   (when r  is odd) degrees 

of freedom under the null hypothesis of MPS. 

From equation (4.1), we can obtain a result for the MDISs as follows: 

 2 ( : ) 2 ( : ) 2 ( : )PS MPS PS MPSnI p nI p nI p p   , 

where /ij ijn n   with ijn n . We note that 2 ( : )PS MPSnI p p  is 

asymptotically distributed as chi-square distribution with 2(( 1) 1) / 2r    (when r  

is even) or 2( 1) / 2r   (when r  is odd) degrees of freedom under the null 

hypothesis of QPS. Note that Tahata and Tomizawa (2008) discussed about the 

relationships between test statistics for the hypotheses of PS, MPS and QPS. 

 

 

5. Discussions 

Bishop et al. (1975, p. 347) discussed about the MDIEs for symmetry. (Note that they 

referred to MDIEs as modified MDIEs.) When the diagonal cells are included in the 

analysis, we get estimated expected frequencies greater than the corresponding 

observed frequencies for the main diagonal cells. They mentioned that such estimates 
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are intuitively unappealing. Same problem occurs for point-symmetry when r  is odd. 

Since the geometric mean of two unequal numbers is less than the arithmetic mean, 

we have 

 
1

* *2
* *( )

2

ij i j

ij i j

n n
n n


 , 

unless * *ij i jn n . Thus using PS

ijp  in Section 3 we see 

 

 
1

2
* *

( , ) ( , )

* *

( , ) ( , )

,

,
2

,

PS

ij ij i j cc

i j i j c c

ij i j

cc

i j c c

np d n n n

n n
d n

dn





 
  

 

 
  

 



 

   

where ( 1) / 2c r  , and d  must be greater than 1. When the center cell is included 

in the analysis, we get cell estimate greater than the observed count for the center cell. 

On the other hand, when r  is even such problem does not occur. Therefore, the 

MDIEs for PS may be appealing when r  is even rather than odd. 

As a similar manner to Kateri and Papaioannou (1997), we shall consider 

another interpretation of QPS. Assume that the row and column marginals are given. 

The problem is to minimize ( : )PSI p q  for * *( ) / 2PS

ij ij i jq p p    

( 1, , ; 1, ,i r j r  ) under the restrictions 

 i ip a   and i ip b  , 

for 1, ,i r  and 

 * * 2 ( 1, , ; 1, , )PS

ij i j ijp p q i r j r    , 

where ia  and ib  are the given marginal with 1i ia b    and 
PS

ijq  are the cell 

probabilities under PS. 

    This is a constraint minimization problem, which can be solved by the method of 

Lagrange multipliers. The Lagrange function to be minimized is 

 
1( )

2( ) 12( ) * *

log ( )

( ) ( 2 ).

ij

ij i i iPS
i j iij

PS

i i i ij ij i j ij

i i j

p
p p a

q

p b p p q



 





 

    

 

 
 (5.1) 

Equating to 0 the derivative of equation (5.1) with respect to ijp , we obtain 

 1( ) 2( ) 12( ) 12( * *)log 1 0
ij

i j ij i jPS

ij

p

q
         . (5.2) 

Thus equation (5.2) leads to 

 1( ) 2( ) 12( )1 i j ijPS

ij ijp q e
     

 , (5.3) 

where 12( ) 12( ) 12( * *)ij ij i j     . Since 

 12( ) 1

* * * *( )ijPS

ij i j ij i j i jp p q e


   


   , 

where 1( )i

i e





  and 2( )j

j e





  from equation (5.3), we obtain 

 12( ) 1

* *

2
ij

i j i j

e


   





. 

Thus we get 

 
* * * *

ij i j

ij i j i j i j

p

p p

 

   


 
. (5.4) 

The equation (5.4) is equivalent to the equation (2.2). Also since the function  

Proceedings 59th ISI World Statistics Congress, 25-30 August 2013, Hong Kong (Session CPS107) p.4717



( ) logf x x x  is a strictly convex function (the second derivative of it is positive), the 

Hessian matrix is positive definite. Thus the fact ensures that equation (5.1) has a 

minimum at ijp . Therefore, we see that in the class of models with given row ( ia ) 

and column ( ib ) marginals ( 1, ,i r ) and with given sums * * 2 PS

ij i j ijp p q   

( 1, , ; 1, ,i r j r  ), the QPS model is the model closest to the PS model in terms 

of the Kullback-Leibler distance. 

    Tomizawa (1985) considered the point-symmetry model for an r c  

contingency table. Also he showed that the point-symmetry model holds if and only if 

both the quasi point-symmetry model and the marginal point-symmetry model for the 

r c  contingency table. The results given in this paper could be extended for the 

r c  contingency tables. 
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