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Abstract

Many statistical and econometric models could be written under the form of conditional esti-
mating equations, also called of conditional moment equations. In the classical approach for
estimating parameters identified by such restrictions, one replaces the conditional moments
by a sufficiently rich finite set of unconditional moments and applies the generalized method
of moments (GMM). However, the GMM approach does not guarantee consistency since
the parameters are not necessarily identified by a finite set of marginal moments. Motivated
by this aspect, several recent articles proposed alternative approaches that preserve consis-
tency. Herein we consider an estimation approach for conditional estimating equations that
is called smooth minimum distance (SMD) and is based on the optimization of a nonlinear
contrast. We introduce an iterative version of SMD based on a quadratic approximation of
the contrast. At any step of the iteration, the estimate has an explicit form and therefore the
new method could be easily implemented. We present en extensive empirical study of the
new method. In particular we compare it with classical methods (least squares, maximum
likelihood, GMM).
Keywords: conditional moment equations, Newton-Kantorovich method, quadratic forms

1 Introduction

Many statistical en econometric models could be written under the form

E[g(Y,X; θ) | X] = 0 p.s. ⇔ θ = θ0, (1)

where Y ∈ Rd, X ∈ Rq, g is a given function, θ ∈ Θ ⊂ Rp is the parameter of the
model and θ0 is the ‘true’ unknown value of the parameter that corresponds to the data
generating process. See, for instance, Kitamura et al. (2004) and Lavergne & Patilea (2008)
for examples and a revue of the literature.

Suppose that the observations (Y >1 , X>1 )>, · · · , (Y >n , X>n )> represent an independent
sample from the random vector (Y >, X>)>; (here and in the following A> denotes the
transposed of a matrix A). Let

gi(θ) = g(Yi, Xi; θ), 1 ≤ i ≤ n, θ ∈ Θ.

LetK be a symmetric function defined on Rq such that its Fourier TransformF [K] is strictly
positive and let

Kij = K(Xi −Xj).

Following the idea of Lavergne & Patilea (2008), one could estimate the parameter θ0 by

θ̃n = arg min
θ∈Θ

Qn(θ), (2)
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where
Qn(θ) =

∑
1≤i,j≤n

gi(θ)gj(θ)Kij .

This estimation idea is related with a presmoothing idea in parametric inference, see Cristo-
bal Cristobal et al. (1987).

If model (1) is correct, for any n

E[Qn(θ)] ≥ 0 et E[Qn(θ)] = 0 if and only if θ = θ0.

This property, combined with mild technical conditions, guarantees the consistence of the
estimator θ̃n. Lavergne & Patilea (2008) derived the asymptotic behavior of this estimator
under general conditions. Herein we propose an iterative version of their estimator that
avoids nonlinear optimization.

2 An iterative approach

Let
∇θgi(θ) =

∂g

∂θ
(Yi, Xi; θ) ∈ Rp.

For θ close to θ′ we can write gi(θ) ≈ gi(θ′) +∇θgi(θ′)>(θ − θ′) and define

Qn(θ, θ′)=
∑

1≤i,j≤n

[
gi(θ

′) +∇θgi(θ′)>(θ − θ′)
][
gj(θ

′) +∇θgj(θ′)>(θ − θ′)
]
Kij .

Note that for a fixed θ′ the quantity Qn(θ, θ′) is a positive semi-definite quadratic form.
Then a simple idea would be to consider the iterations

θ(k)
n = arg min

θ
Qn(θ, θ(k−1)), k = 1, 2, · · · ,

where θ(0)
n is some initial value. This leads us to consider the following iterations

θ(k)
n = θ(k−1)

n −

αnIp +
∑

1≤i,j≤n
∇θgi(θ(k−1)

n )∇θgj(θ(k−1)
n )>Kij

−1

×

 ∑
1≤i,j≤n

∇θgi(θ(k−1)
n )gj(θ

(k−1)
n )Kij

 , k = 1, 2, · · · ,

where αn > 0 is a regularization parameter that avoids the inversion of ill-conditioned ma-
trices. The estimator we propose is θ̂n = θ

(k?)
n for some value k? obtained from a stopping

rule for the iterations.
Let us note that our iterative method could be interpreted as a Newton-Kantorovich

method for solving a nonlinear equation.

3 Empirical evidence

In this section we present some simulation experiments that we performed to study the small
sample size properties of our estimator.
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3.1 Endogeneity in nonlinear regressions

Consider the model
Y = (X>θ)2 + U (3)

where  U
V
Z

 ∼ N
 0

0
0

 ,
 1 0.5 0

0.5 1 0
0 0 1


and X = (X1, X2)> with X1 = Z + V/2 and X2 = Z2 + V . Hence, E[Y − (X>θ)2 |
X] 6= 0 but E[Y − (X>θ)2 | Z] = 0 a.s. We separately simulate 1000 samples of size
n = 20 of independent realizations of Y and X using θ0 = (0.5, 0.9)>. We compare our
new estimation method with the classical GMM based on the instrumental variables Z and
Z2. In Figure 1 we provide the bias and the standard deviation of the estimates obtained
using the two methods. For our method, the bandwidth h is chosen by a cross-validation
method.

The simulation results reveal a good performance of our new method. The bias are
low compared with the classical method. The results are quite stable with respect to the
bandwidth. Similar conclusions were obtained with other small sample sizes, like n = 10
and n = 30.
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Figure 1: Results for Model (3) when sample size n = 20: in (a) and (b) the solid
lines are the result of our iterative method for different bandwidths h and the dashed
lines are the result of GMM, the red lines represent θ1 and the blue lines represent
θ2; in (c)and (d) the first box-plot is the result of our method and the second one is
the result of GMM

Proceedings 59th ISI World Statistics Congress, 25-30 August 2013, Hong Kong (Session CPS107) p.4710



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

(a) Bias of θ̂1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

(b) Bias of θ̂2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

(c) Bias of θ̂3
Figure 2: Bias of parameters estimates in Model (4) when sample size n = 20:
solid lines for the results of our method, dashed lines for the results of MLE.

3.2 Logistic regression

In this example we consider the popular logistic regression with i.i.d. data (Y,X>)>. Let

Y ∼ Logistic(µ), (4)

where µ = X>θ and θ0 = (1.2, 0.6, 0.8)>. Here X has a multivariate normal distribution

N

 0
0
0

 ,
 1 0.5 0.25

0.5 1 0.5
0.25 0.5 1

 .

We compare our approach with the most popular estimation method, that is the maximum
likelihood. The conditional moment equations we use for our method are the score equa-
tions, that is we take

g(Y,X, θ) =

[
Y − exp(X>θ)

1 + exp(X>θ)

]
X.

Here the data-driven selection of h is done by minimization of the criterion used for estima-
tion, that is the bandwidth is solution of the problem

min
h

min
θ

∑
1≤i,j≤n

gi(θ)
>gj(θ)Ki,j .

To avoid the inversion of ill-conditioned matrices, a regularization parameter αn was used
and its value was set αn = 0.01.

Several sample sizes were considered, we only report the case n = 20. The experiment
was repeated 1000 times. In Figure 2 we report the biases for our method with differen-
t bandwidths and the bias of the maximum likelihood estimator (MLE). For most of the
values h, our estimates are less biased. In Figure 3 we present the corresponding standard
deviations. Overall, MLE perform better, but for many bandwidths our estimators have less
than 25% extra variability. In Figure 4 we present the result obtained with the data-driven
bandwidth rule. The box-plots reveal that our estimators behave well, at least as well as the
MLE.
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Figure 3: Standard deviation of Model (4) when sample size n = 20: solid lines for
the results of our method, dashed lines for the result of MLE.

−4

−2

0

2

4

6

8

10

12

14

1 2

(a) Box-plot of the bias of θ̂1

−5

0

5

10

15

20

1 2

(b) Box-plot of the bias of θ̂2

−10

−5

0

5

10

1 2

(c) Box-plot of the bias of θ̂3
Figure 4: Box-plot of parameters estimates in Model (4) with n = 20: the first box-
plot is the result of our method and the second one is the result of MLE.
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