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Abstract 

 
Standard control charts are often based on the assumption that the observations follow a specific parametric 

distribution, such as the normal. In many applications we do not have enough information to make this 

assumption and in such situations, development and application of control charts that do not depend on a 

particular distributional assumption is desirable. Nonparametric or distribution-free control charts can serve 

this wider purpose. A key advantage of nonparametric charts is that the in-control run-length distribution is 

the same for all continuous process distributions. In this paper we examine several aspects related to the 

efficient design and implementation of a class of Phase II nonparametric cumulative sum (CUSUM) charts 

based on the exceedance statistic. Here we investigate which order statistic (percentile), from the reference 

(Phase I) sample, should be used to obtain the best performance. It is observed that other choices than the 

median, such as the third quartile, can play an important role in improving the performance of the chart. We 

also study different choices of the CUSUM design parameter, k, called the reference value. Moreover, 

although the most widely used chart performance metric is the average run-length (ARL), certain 

shortcomings have been observed and instead we use more representative measures for the assessment of 

chart performance. These include other percentiles of the run-length, more specifically, the median run-

length (MRL), which provides additional and more meaningful information about the in-control and out-of-

control performances of control charts, not given by the ARL. The procedures are illustrated with some data. 

A summary and some concluding remarks are given. 
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1. Introduction 

Control charts are effective tools in Statistical Process Control (SPC) for monitoring a process over time. 

Charts that are constructed on the assumption of a specific form of a parametric distribution are called 

parametric control charts. In many applications, however, there is not enough information to justify this 

assumption and control charts that do not require a particular distributional assumption are desirable. 

Nonparametric or distribution-free control charts can serve this broader purpose. A key advantage of 

nonparametric charts is that their in-control (IC) run-length distribution is the same for all continuous process 

distributions. This is not true for parametric control charts in general and consequently their IC robustness 

can be a legitimate concern. Moreover, nonparametric charts are often more robust and efficient under non-

normal distributions. For a thorough account of the nonparametric control charts literature see Chakraborti et 

al. (2001), Chakraborti and Graham (2007) and Chakraborti et al. (2011). While the Shewhart-type charts are 

the most widely known charts in practice because of their simplicity and global performance, other classes of 

charts, such as the cumulative sum (CUSUM) charts are useful and sometimes more naturally appropriate in 

the process control environment in view of the sequential nature of data collection. These charts are based on 

the cumulative totals of a suitable statistic, obtained as the data accumulate, and are known to be more 

efficient for detecting persistent shifts in the process. In this paper we study a class of Phase II nonparametric 

cumulative sum (denoted NPCUSUM) charts for monitoring the unknown location parameter, based on the 

exceedance statistic. The key focus in this paper is investigating which order statistic, from the Phase I 

sample, should be used for good performance. Note that the NPCUSUM chart using the reference sample 

median was first introduced and studied by Mukherjee et al. (2013), and is referred to as the nonparametric 

exceedance CUSUM (denoted NPCUSUM-EX) chart. For comparison purposes, we include a recent 

Proceedings 59th ISI World Statistics Congress, 25-30 August 2013, Hong Kong (Session CPS108) p.4777



 

 

 

 

nonparametric chart, the NPCUSUM chart based on the Wilcoxon rank-sum statistic (denoted NPCUSUM-

Rank), proposed by Li et al. (2010).  

 

2. Statistical framework and preliminaries of CUSUM charts 

 
Several NPCUSUM charts have been developed: For monitoring the specified location of a continuous 

process see e.g. McGilchrist and Woodyer (1975), Bakir and Reynolds (1979) and Amin et al. (1995). On the 

other hand, for monitoring the unknown location of a process see e.g. McDonald (1990), Jones et al. (2004) 

and Li et al. (2010). These are examples of univariate Phase II NPCUSUM control charts that are useful 

when the location is unknown and charting is based on an IC reference (Phase I) sample. Assume that a 

reference sample ��, ��, … , �� is available from an IC process with an unknown continuous cdf �(	). 
Let	�
�, �
�, … , �
��, � = 1,2,…, denote the ��� test Phase II sample of size�
. Let �(�) denote the cdf of the 

distribution of the ��� Phase II sample. Both � and � are unknown continuous cdf’s and the process is IC 

when � = �. For detecting a change in the location, we use the location model	��(	) = �(	 − �) where 

��(−∞,∞) is the unknown location parameter so the process is IC when	� = 0. It is often the case that the 

Phase II samples (subgroups) are all of the same size, �, so that the subscript � can be suppressed. 

 

2.1 NPCUSUM-EX control chart 

 

Let  
,! denote the the number of � observations in the ��� Phase II sample that exceeds �(!), the "�� ordered 

observation in the reference sample. The statistic  
,! is called an exceedance statistic and the probability 

#! = 	$[� > �(!)|	�(!)] is called an exceedance probability. Mukherjee et al. (2013) proposed the 

NPCUSUM-EX chart which may be introduced as follows. Given	�(!) = 	(!), it can be shown (see Result 

A.1 in the Appendix of Mukherjee et al. (2013)) that the  
,! follows a binomial distribution with 

parameters	(�, #!) and thus, conditionally on �(!),		we can use a binomial-type CUSUM chart based on the 

 
,!’s to monitor the process location. Noting that )* 
,!+�(!), = �#! and the conditional probability #! is 

unknown, we may replace it by its unconditional IC value - = �	.	!	/	�
�	/	�	  (the reader is referred to Result A.4 

in the Appendix of Mukherjee et al. (2013) for the derivation of -). Hence the two-sided NPCUSUM-EX 

chart has plotting statistics 

0
/ = max	[0, 0
.�/ + * 
,! − �-, − 5]  and  0
. = min	[0, 0
.�. + * 
,! − �-, + 5]        
for � = 1,2,3,… with starting values 09/ = 09. = 0	and 5 ≥ 0 is the reference value. The chart signals a 

possible OOC situation for the first � at which either 0
. < −< or 0
/ > <,	where < > 0 is called a decision 

constant. While constructing their NPCUSUM-EX chart, Mukherjee et al. (2013) focused on the median of 

the reference sample with the reasoning that the median is a robust and good representative of the reference 

data and one of the popular percentiles in practice. They were also swayed by earlier research in the fields of 

nonparametric hypothesis testing and control charts. However, the question of performance of the chart, 

depending on which reference sample order statistic is chosen to create the chart, has not been examined. To 

this end, in this paper we investigate the performance of the NPCUSUM-EX chart systematically, based on 

the 25
th
, 40

th
, 50

th
, 60

th
 and 75

th
 percentile, respectively.   

 

2.2  NPCUSUM-Rank control chart 

 
Li et al. (2010) recently proposed a NPCUSUM chart for location based on the well-known Wilcoxon rank-

sum with the following plotting statistics 

0
/ = max =0, 0
.�/ + >?
 − �(�/�/�)
� @ − 5A  and  0
. = min =0, 0
.�. + >?
 − �(�/�/�)

� @ + 5A   
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for � = 1,2,3,… where the starting values 09/ = 09. = 0 and 5 ≥ 0 is the reference value. The chart signals a 

possible OOC situation for the first � at which either 0
. < −< or 0
/ > <,	where < > 0. Otherwise, the 

process is considered IC and process monitoring continues without interruption.  

 

3. Implementation and performance 
 

The most widely used chart performance metric is the average run-length (ARL) and determining the charting 

constants typically involve specifying a nominal IC ARL value, such as 500. However, since the run-length 

distribution is significantly right-skewed, researchers have advocated using other, more representative, 

measures for the assessment of chart performance. These include other percentiles of the run-length, more 

specifically, the median run-length (MRL), which provides more meaningful information about the IC and 

OOC performances of control charts, not given by the ARL. The median is far less sensitive to measurement 

errors and the median is a more robust measure, in that it is far less impacted by outliers.  

 

3.1 Implementation: Choice of chart design parameters    

 

The design parameters k and H are chosen so that the chart has a specified nominal MRL0. The first step in 

this direction is to choose k. Under the normal distribution, the choice of k has been discussed by numerous 

authors, see, for example, Lucas (1985) and Montgomery (2009). Lucas (1985) stated “The CUSUM 

parameter k is determined by the acceptable mean level (BC) and by the unacceptable mean (BD) level which 

the CUSUM scheme is to detect quickly. For normally distributed variables the k value is chosen half way 

between the acceptable mean level and the unacceptable mean level.” In more recent literature see e.g. 

Montgomery (2009), it is agreed that in the normal theory setting k is typically chosen relative to the size of 

the shift we want to detect, that is, 5 = �
�E, where E is the size of the shift in standard deviation units. In this 

study we set the reference value equal to 5 = EFGH)I( 
,!) and 5 = EFGH)I(?
) for the NPCUSUM-EX 

and the NPCUSUM-Rank charts, respectively, with E = 0.00(0.25)1.00, 1.50, 2.00 and 3.00. Note that 

although shifts as large as E = 3.00 were considered in this study, the largest magnitude reported in the paper 

is E = 1.00, since, for larger shifts, the run-length characteristics of the charts tend to converge. After 

choosing k, the next step is to choose H, in conjunction with the chosen 5, so that a desired nominal MRL0 is 

attained. However, for a discrete random variable the chances are that H cannot always be found such that 

the desired nominal MRL0, say 350, is attained exactly and hence using a conservative approach, H is found 

so that the attained MRL0 is less than or equal to the desired nominal MRL0. The decision interval, H, is 

found using a search algorithm using 100,000 Monte-Carlo simulations. 

 

3.2 Out-of-control control chart performance comparisons 

 

Note that SymmMixN denotes the Symmetric Mixture Normal distribution [0.6N(B� = 0, J� = 0.25) + 

0.4N(B� = 0, J� = 4)], AsymmMixN1 denotes the Asymmetric Mixture Normal distribution [0.6N(B� = 1, 

J� = 1) + 0.4N(B� = 0, J� = 4)] and AsymmMixN2 denotes the Asymmetric Mixture Normal distribution 

[0.6N(B� = −1, J� = 1) + 0.4N(B� = 0, J� = 4)]. 
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(a) N(0,1) (b) EXP(1) 

  
(c) t(3) (d) DE(M, N/√Q) 

  
(e) LogN(0,1) (f) SymmMixN

 

  
(g) AsymmMixN1 (h) AsymmMixN2 

  

Figure 1. OOC performance comparison of the 

NPCUSUM charts across various distributions for  

R = 100 and � = 5 
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A summary of the figures and some recommendations are listed below. Note that shorthand notation is used 

to describe the charts, for example, the CUSUM-EX chart based on the 50
th
 percentile is denoted by EX(50) 

etc., and the CUSUM-Rank chart is denoted by Rank. 

 

Distribution Small shifts (E ≤ 0.50) Medium to large shifts (E > 0.50) 

N(0,1) The Rank chart is better than EX chart. The EX(60 or 75) chart is the best 

for all distributions. In addition, as 

the size of the shift increases the 

exceedance chart based on the 75
th
 

percentile performs the best and 

almost immediately detects the 

shift. The recommendation is to 

use the exceedance chart based on 

the 75
th
 reference percentile which 

will signal almost immediately. 

 

 

EXP(1) The EX(25) chart is better than the Rank chart for 

E = 0.25 and the EX(40) chart is better than the Rank 

chart for E = 0.50. 

t(3) Although the Rank chart is performing the best for 

E = 0.25, the EX(75) chart is performing the best for 

E = 0.50. 

DE(0,1/√2) The EX(60) chart is better than the Rank chart for 

E = 0.25.  

For E = 0.50, the EX(60 or 75) chart and the Rank 

chart perform similarly. 

LogN(0,1) For E = 0.25 the EX(40) chart is best, whereas for 

E = 0.50 the EX(50 or 60) chart and the Rank chart 

perform the best.  

SymmMixN 

AsymmMixN1 

and 

AsymmMixN2 

EX(60  or 75) chart is the best 

 

4. Summary and concluding remarks 

CUSUM charts are popular control charts used in practice; they take advantage of the sequential 

accumulation of data arising in a typical SPC environment and are known to be more efficient than Shewhart 

charts in detecting smaller and persistent shifts. However, the traditional (parametric) CUSUM charts can 

lack IC robustness and as such the possibility of varying and unknown false alarm rates is a practical concern 

with their applications. Nonparametric CUSUM (denoted NPCUSUM) charts offer an attractive alternative 

as they combine the inherent advantages of nonparametric charts (IC robustness; same, fixed, false alarm rate 

for all continuous distributions) with the better small shift detection capability of CUSUM-type charts. We 

examine a class of NPCUSUM charts based on the exceedance statistic by investigating which order statistic 

(percentile), from the reference sample, should be used for good overall performance. For comparison 

purposes an alternative rank-based nonparametric chart, the NPCUSUM chart based on the Wilcoxon rank-

sum statistic, is used and it is seen that the exceedance CUSUM chart based on higher percentiles performs 

better than its competitors in many cases for a number of distributions. More specifically, it is seen that for 

moderate to large shifts there is little doubt that the practitioner should use the exceedance chart based on the 

75
th
 percentile which will signal almost immediately. 
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