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Abstracts 
 
Analysis of the emerging financial markets dependent structure in the BRIC countries 
under international diversification is of great significance to multidimensional 
distribution assets. Considering the difficulty of the high-dimensional modeling,vine 
Copula will be used to mearsure the financial markets dependent structure.Then, the  
dependent structure of the BRIC stock markets are studied by vine Copula.From the 
results,the international diversification is the inevitable choice to conform to the 
capital international trend, and the BRIC stock markets can be used as the preferred 
markets in terms of the international diversified investment owing to the low 
correlation among them. 
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1. Introduction 

The benefit of international diversification is of great importance in today’s 
economic climate. Investors often assess diversification benefits in different countries 
or regions by international diversification. A growing number of studies have shown 
that the international diversification is an important means to improve the return on 
assets(Samuelson(1967), Jonathan and Fabrizio(2011), Lorán et al.(2011)). 

It is vital to have accurate measures of dependence. According to Markowitz 
(1952), the income will not be higher even when the assets more dispersed. On the 
contrary, investors’ income will increase significantly when the correlation between 
the international financial markets is weak. Therefore, the benefits and risks in the 
international diversification of investment is closely related to the correlation or the 
dependent structure of financial markets. 

Diversification is assessed with various dependence measures. In light of the 
above discussion, we estimate dependence in two ways, using correlations and copulas. 
In recent years copula modeling has become increasingly popular in finance.Cpula 
may possess complex dependence structures—linear,nonlinear,and tail dependence 
—and this had raised questions and highlighted concerns about the appropriateness of 
the multivariate normal assumption and the use of the correlation coefficient. For the 
bivariate case,a rich variety of copula families is available and well-investigated 
(Nelsen,2007).However, in arbitrary dimension, the choice of adequate families is 
rather limited. Standard multivariate copulas such as the multivariate Gaussian or 
Student-t as well as exchangeable Archimedean copulas lack the flexibility of 
accurately modeling the dependence among larger numbers of variables. 
Generalizations of these offer some improvement, but typically become rather 
intricate in their structure and hence exhibit other limitations such as parameter 
restrictions. Therefore, we need to use multivariate copulas to study the correlation 
between the dependent structure of financial markets. 

BRIC (Brazil, Russia, India and China) are viewed currently as pillars of relative 
political, economic and financial stability, with the prospect of a major shift in future 
world power(Haifeng Xu and Hamori,2012). They are committed to advance “the 
reform of international financial institutions”, have pledged to work together on 
“political and economic issues such as energy and food security” and to cooperate to 
promote “fundamental research and the development of advanced technologies.” The 
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BRIC together currently account for more than a quarter of the world’s land area, 
more than 40% of the world’s population and about 15% of global GDP. At the trend 
of expanded international diversification,the BRIC's proportion of the international 
investment portfolio is increasing. Therefore, we need a more in-depth study on the 
dependent structure of financial markets in the BRIC countries. 

In this paper, we model the dependent structure of BRIC’s financial data using the 
concept of vine Copula. We select C/D-vine copula and identify the type of 
dependence captured by each country. The remaining parts of the paper are organized 
as follows: Section 2 provides a brief review of the vine Copula and Section 3 
describes the selecting of vine Copula models. Section 4 presents the empirical results. 
Finally,Section 5 provides the conclusions. 
 
2. Vine Copulas  

Vine copulas do not suffer from any of these problems. Initially proposed by Joe 
(1996) and developed in more detail in Bedford and Cooke (2001, 2002) and in 
Kurowicka and Cooke (2006), vines are a flexible graphical model for describing 
multivariate copulas built up using a cascade of bivariate copulas, so-called 
pair-copulas. Their "statistical breakthrough" was due to Aas et al. (2009) who 
described statistical inference techniques for the two classes of canonical (C-) and 
D-vines. 

These are derived as iterative pair-copula constructions, where the d(d-1)/2 
pair-copulas can be arranged in d-1 trees (acyclic connected graphs with nodes and 
edges). In the first C-vine tree, the dependence with respect to one particular variable, 
the first root node, is modeled using bivariate copulas for each pair. Conditioned on 
this variable, pairwise dependencies with respect to a second variable are modeled, the 
second root node. In general, a root node is chosen in each tree and all pairwise 
dependencies with respect to this node are modeled conditioned on all previous root 
nodes, i.e., C-vine trees have a star structure. This gives the following decomposition 
of a multivariate density, the C-vine density w.l.o.g. root nodes 1,…,d (otherwise 
nodes can be relabeled), 
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where fk,k=1,…,d,denote the marginal densities and cj,j+1 bivariate copula densities. 

Similarly, D-vines are also constructed by choosing a specific order of the 
variables. Then in the first tree, the dependence of the first and second variable, of the 
second and third, of the third and fourth, and so on, is modeled using pair-copulas, i.e., 
if we assume the order 1,...,d, we model the pairs (1,2), (2,3), (3,4), etc. In the second 
tree, conditional dependence of the first and third given the second variable (the pair 
(1,3︱2)), the second and fourth given the third (the pair (2,4︱3)), and so on, is 
modeled. In the same way, pairwise dependencies of variables a and b are modeled in 
subsequent trees conditioned on those variables which lie between the variables a and 
b in the first tree, e.g., the pair (1,5︱2,3,4). That is each D-vine tree has a path 
structure. This then leads to the D-vine density which also conveniently decomposes a 
d-dimensional density (as above the order is w.l.o.g. chosen as 1,...,d; otherwise nodes 
can be relabeled): 
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Figure 1: Examples of five-dimensional C- (left panel) and D-vine trees (right panel) 
with edge indices. 

By allowing arbitrary bivariate copulas for each pair-copula term in the 
decompositions (1) and (2), the multivariate copulas obtained from C- and D-vine 
structures, so-called C- and D-vine copulas, constitute very flexible models, since 
bivariate copulas can easily accommodate complex dependence structures such as 
asymmetric dependence or strong joint tail behavior (Joe, Li, and Nikoloulopoulos 
2010). Examples of five-dimensional C- and D-vine trees are shown in Figure 1. Here, 
the order of root nodes in the C-vine is 1,...,5, which also is the order of the first 
D-vine tree. Edge labels show the indices of the corresponding pair-copula terms. 
 
3. Selection of vine copula models 

As already noted there are many different orderings of the variables in C-vine 
models possible. We will now consider these selection problems.As noted in Aas et al. 
(2009) it is preferable to choose models with high dependence in the bivariate 
conditional distribution characterized by ci,j|i1,…,ik , where the number of conditioning 
variables k is small. This suggests a data driven sequential approach starting with 
determining the d−1 unconditional pair-copulas needed in a C-vine copula. For this 
estimate all pairwise Kendall’s τi,j values by τ*

i,j and find the variable i* which 
maximizes 

*
,
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over i = 1,…, d. Here we set τ*
i,i = 1 for i = 1, . . . , d. To ease notation we reorder the 

variables in such a way that the first variable is now i*. For this reordering c1,j+1, j = 
1,…,d−1 are selected as unconditional pair-copulas.We call variable 1 also the root of 
all unconditional pair-copulas. Before determining the pair-copulas with the single 
conditioning variable 1, a choice of the pair-copula family and its parameter value for 
c1,j+1 for j = 1,…,d−1 has to be made. 

We now consider the problem of choosing the copula family. This has been a well 
studied problem and many procedures have been suggested. Note that for the 
sequential selection procedure we only require a copula selection in two dimensions. 
Copula goodness-of-fit tests have been studied by Genest et al. (2009) and Berg 
(2009).  

Joe (1997) proposed a model selection based on the Akaike information criterion 
(AIC) of Akaike (1974). 

*

1
: 2 log ( ; ) 2
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where θ* denotes the estimate of θ and k is the number of parameter θ=(θ1,…, θk)T in 
the model. Specifying the AIC to a specific copula with density c we get 
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which can be used as a copula selection criterion. The advantage of this selection 
method is that it can be automatized in a copula selection program. 

Next we describe how the parameters of the C-vine density given by (1) or D-vine 
density given by (2) can be estimated by maximum likelihood. Inference for a vine is 
also feasible, but the algorithm is not as straightforward. 

we will use the function h(x, v, θ) to represent this conditional distribution function 
when x and v are uniform, i.e. f(x) = f(v) = 1, F(x) = x and F(v) = v. That is, 
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                (6) 

where the second parameter of h(·) always corresponds to the conditioning 
variable and θ denotes the set of parameters for the copula of the joint distribution 
function of x and v. 

Starting values of the parameters needed in the numerical maximisation of the 
log-likelihood may be determined as follows: 

(1) Estimate the parameters of the copula in tree 1 from the original data; 
(2) Compute observations (i.e. conditional distrubution functions) for tree 2 using 

the copula parameters from tree 1 and the h(·) function; 
(3) Estimate the parameters of the copulae in tree 2 using the observations from 

(2); 
(4) Repeat the second step and the third step until the parameters of the last tree 

estimated. 
Finally, how to choose the best model between C-vine and D-vine Copula? We 

will use the Vuong and the Clarke tests to select the best model(Vuong,1989). These 
tests are suitable to compare two models, which are non-nested. Both are likelihood 
ratio based and related to the common Kullback-Leibler information criterion, which 
measures the distance between two statistical models. 
 
4. Applications 

We apply now our C-vine and D-vine model to 4 time series of stock market 
weekly return from BRIC from June 12, 2002 until September 24, 2012. Therefore we 
have 520 values available for each country considered. For simplification we use the 
following abbreviations: CHN(China), RUS (Russia), BRA(Brazil) and IN (India). 

Before analyzing the dependence in the data set, we selected appropriate time 
series models for the univariate margins. For the stock returns, we used an 
AR(1)-model or an ARMA(1,1)-model. Further, for all variables, a 
GARCH(1,1)-model was used to model the volatility. The error distribution of the 
GARCH-model was chosen to be the Student's t-distribution.After filtering the 
original returns with the chosen univariate models, the standardized residual vectors 
are converted to uniform pseudo-observations using their empirical distribution 
functions. 

Table 1: Empirical Kendall’s τ matrix and the sum over the absolute entries of each row  

 BRA CHN IN RUS S 

BRA 1.000 .152 .350 .327 1.829 

CHN .152 1.000 .146 .105 1.403 

IN .350 .146 1.000 .272 1.768 

RUS .327 .105 .272 1.000 1.704 

 
We apply now the sequential procedure to select an appropriate vine copula for the 

stock market copula data. Table 1 gives the empirical Kendall’s τ matrix and the sum 
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of their absolute values, denoted by S. From this we see that BRA is the first root 
variable. Given this first root variable and the sequential vine identification procedure 
from previous chapter the next root variable CHN followed by IN and finally RUS can 
be identified. 

For our implementation for the copula family choice, we consider the Gaussian,t-, 
Clayton, Gumbel, Frank, BB1 and BB7 copula family, which cover a wide range of 
dependence behavior. 

Table 2: Estimates for C-vine and D-vine copula models 
 C-vine D-vine 

i Parameter Copula  θ AIC Parameter Copula θ AIC 

0 ρBRA,IND 

νBRA,IND 

ρBRA,RUS 

νBRA,RUS 

ρBRA,CN 

νBRA,CN 

t 

 

BB7 

 

t 

0.519 

5.018 

1.334 

0.652 

0.241 

5.549 

-166.72 

 

-168.59 

 

-36.86 

ρBRA,IND 

νBRA,IND 

ρIND,RUS 

νIND,RUS 

ρRUS,CN 

νRUS,CN 

t 

 

Survial-BB7  

 

t 

0.519 

5.018 

1.325 

0.417 

0.163 

5.544 

-166.72 

 

-117.67 

 

-19.14 

1 ρIND,RUS∣BRA 

νIND,RUS∣BRA 

θIND,CN∣BRA 

t 

 

Survial- Gumbel 

0.216 

7.181 

1.073 

-28.89 

 

-5.33 

ρBRA,RUS∣IND 

νBRA,RUS∣IND 

θIND,CN∣RUS 

BB1 

 

Survial-Gumbel 

0.321 

1.132 

1.123 

-77.23  

 

-17.92 

2 ρRUS,CN∣BRA,IND 

νRUS,CN∣Brazil,IND 

t 0.016 

11.883 

0.64 θBRA,CN∣IND, RUS Frank 0.921 -9.50 

 AIC -405.7406 -408.1872 

 
The chosen copula types and estimated parameters for the all trees are given in 

Table 2.Note that the variable i indicates the number of variables in the conditioning 
set and the pair-copula family type chosen. 

Having fitted the full C-vines and D-vines, in order to determine the better fitting 
vine copula model for the BRIC stock markets, we perform a Vuong test comparing 
both models. Table 3 shows the results.The test statistics close to zero (irrespective of 
the correction considered) and the p values indicate that the C-vine copula model is 
better fitting model.  

Table 3: Test statistics of Vuong test 
Vuong 0.05068923 vuong.Schwarz -0.7603768 

P 0.9595732 vuong$p.value.Schwarz 0.4470294 

 
5. Conclusions 

In this paper we introduced the class of vine copulas and provided effective 
estimation procedures for the unknown parameters. From the results,the international 
diversification is the inevitable choice to conform to the capital international trend, 
and the BRIC stock markets can be used as the preferred markets in terms of the 
international diversified investment owing to the low correlation among them. 

To summarize, the above analysis showed low positive dependencies among the 
BRIC stock indices, where the Brazil stock market was determined to be central for 
explaining the overall dependence observed in the data. Based on the data we could 
discriminate among fitted C- and D-vine copula models, where it should be noted 
that both models provide additional insights due to their specific structures. 
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