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Abstract

The next generation sequencing technology (RNA-seq) provides absolute quantifi-
cation of gene expression using counts of read. Transcriptome studies are switching
to rely on RNA-seq rather than microarrays since RNA-seq has higher sensitivity
and dynamic range, with lower technical variation and thus higher precision than
microarrays. Limited work has been done on expression analysis of longitudinal
RNA-seq data to account for the time-dependence nature of the count data with
over-dispersion property. Functional clustering is an important method for exam-
ining gene expression patterns and thus discovering co-expressed genes to better
understand the biological systems. We propose a model-based clustering method
for identifying gene expression patterns using time-course RNA-seq data. A time-
course genomic dataset is employed for illustration.

Keywords: Expectation-Maximization algorithm, longitudinal experiments, over-
dispersed count data, mixture model.

1 Introduction

Microarrays and sequence-based methods are both often used in gene expression
studies, with an increasing popularity of the use of RNA-seq over microarrays in
transcriptome analyses. Statistical methods used for differential expression analysis
with these two technologies are different because microarray intensities are contin-
uously distributed, whereas RNA-seq gives discrete measurement of reads for each
gene. Researchers have tested for differential expression in RNA-seq data using
Poisson distributions (Bullard et al., 2010; Marioni et al., 2008) but it has been
shown that the Poisson assumption of equivalent mean and variance ignores the
extra variation arises from the differences in replicate samples (Nagalakshmi et al.,
2008; Robinson and Smyth, 2007). Over-dispersed models are more suitable for
accommodating the over-dispersion in RNA-seq data.

Functional clustering of genomic data can identify co-expressed genes with similar
functions and help explain the complexities of biological systems. Exploring the
patterns shown in genomic data from time-course experiments which provide us
with important information on changes in expression levels over time. The devel-
opment of clustering algorithms suitable for RNA-seq data becomes an important
area of research since they allow for analysis of multiple treatment groups rather
than simple two-group analyses. Clustering methods have been widely applied to
time-course microarray data (Cooke et al., 2011; Griin et al., 2012; Ng et al., 2006;
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Schliep et al., 2003; Yuan and He, 2008) but these clustering approaches are based
on continuous distributions and thus not appropriate for the discrete-type RNA-seq
data.

In order to effectively model the information provided by RNA-seq data, we con-
sider an efficient data clustering method to identify patterns on gene expression data
from time-course RNA-seq experiments. The goal is to use a model-based cluster-
ing approach to identify co-expressed genes and their expression patterns from gene
expression levels measured by read counts over time. In the next section, we present
the mixture model, the Expectation-Maximization (EM) algorithm and a hybrid-EM
algorithm for our clustering approach. An application to real data is presented in
section 3, and section 4 includes the conclusion to the proposed clustering approach.

2 Model and Estimation

The clustering of time-course RNA-seq data can be viewed as identifying devel-
opmental trajectories (or temporal pattern) within a RNA-seq measured gene ex-
pression dataset. The semi-parametric group-based trajectory modeling approach
(Nagin, 1999) is an example of model-based clustering method for longitudinal data.
The method models the data as a mixture of distinct groups/clusters defined by their
trajectories, and differences that may explain individual- (or sample-) level variabil-
ity can be expressed in terms of cluster differences. Since RNA-seq data suffers from
the over-dispersion problem, a common approach is to model the count data using
negative binomial distributions to accommodate over-dispersion. Here we develop
an efficient model-based clustering method with mixtures of negative binomials to
cluster time-course RNA-seq data using the semi-parametric group-based modelling
approach proposed by Nagin (1999), and an EM algorithm for maximum likelihood
estimation is incorporated to estimate the parameters in our clustering approach.

When working with time-course RNA-seq data, we denote Y1, ..., Y, as the time-
series read counts of gene 1 to gene n in the sample and Pr(Y ;) as the probability
of observing a specific time-series sequence of read counts on gene j over time. With
y=(yq,- yn)T denoting the observed random sample where y; is the realization
of the random variable Y ;, we can represent the data as a standard g-component
mixture model in the form

g
f(yj;¢) = Zﬂz‘fi(yjé 6:),
i=1

where fi(yj; 0;) is the component density for component i, and the corresponding
likelihood is given by

L(p) =[] £y ).
j=1
The component density f;(y;;8;) is the conditional density function of Y; given

component membership of the i component with component parameter 6;, and
P = (11, ...,mg, 01, ...,0,) is the set of model parameters from the different mixture
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components. The goal is to obtain a set of estimates for the parameters such that
the likelihood is maximized. The parameters © define the shapes of the expression
pattern curves for the clusters and the probability of cluster memberships. The
shape of each expression pattern curve (or trajectory) is described by a statistical
model, and a separate set of parameters is estimated for each group to allow the
shapes of curves to differ across groups.

Let y; = (yj1, .-, Yjm) be the observed read counts at m time points for each gene j.
Utilizing the flexibility provided by polynomial functions, we assume a quadratic re-
lationship between time and read counts; and conditional on being in cluster ¢, each
gene has independent observations over time. The cluster parameter 8; includes
B and s;, where 8¢ = (B8, 8L, B%) determines the shape of the trajectory and the
parameter s; describes the dispersion of the genes in cluster ¢, and these parameters
are allowed to differ across clusters.

We use a negative binomial model for the read counts and conditional on being in
group %, a gene j is assumed to have independent read counts over the m sampling
time points, so we have

1 (Dyje + 5i)
7 Jt i) s; ;

. . . — 5i(1 — ms Yijt
fz(ijﬁ , 5i) tl_Il < yjt!P(Si) p; ( i) >
with mean A A A

X = exp(B'xj) = exp(By + Pitimej, + ﬁ%tz’me?t)
and s; being the dispersion parameter for the group ¢ and probability p; =
The mixture likelihood for the entire sample of n genes in g clusters is

Si

57,+>\

n_ g
L) = []D_mfiys B s:)
=1 =1

Defining the missing data vector z = (27, ..., 2I)T with z; = (21}, ..., 245)T reflecting

the component membership of gene j, the complete-data likelihood for a sample of
n genes can be written as

n g
L) = [ITI7" fitys: 8, s:)7

j=1i=1

and the maximum likelihood estimates ¥ = (71, sy ﬁg,,ﬁl, 89,51, ., 54) based on
the complete data can be obtained by maximizing the log-likelihood.

For our model-based clustering approach, the EM algorithm is implemented by
treating the unknown component membership of the mixture population as missing
data, so that the data is augmented with indicators of component membership. In

~ (k
the EM framework, starting from some current estimate for v, say 1/)( ), the E-
step involves the calculation of the expectation of the complete-data log-likelihood,

~ (k ~(k
conditional on the observed data and the current estimate ¢( ). Since y and ’l,b( )
are treated as known, the complete-data log-likelihood is linear in the membership
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variables so the conditional expectation depends only on the expectation of Z;;. The
E-step in the (k + 1) iteration involves the evaluation of

o Ty 8 sy aP iy B )
E(le|ijd) ) - (k) - (k) i(k - Zij :
f(yjﬂ/’i ) i f(y]ﬁﬁz( )a si)

This step is simply replacing the missing membership variables by the current values

of their conditional expectations, i.e. the resulting estimate is the posterior probabil-

ity that gene j belongs to cluster 7. On the M-step, the value of ¥ that maximizes

the complete-data log-likelihood with each z;; replaced by the corresponding poste-
rior probability is evaluated, and the estimate of 1 is updated by

- (k+1)

P = arginaxE[log Lwly: ™).

The cluster proportions are given by

(k+1) _ 1§~ 50
~ (k41 A(k
j=1
There is no closed form solution to the evaluation of 8 and s in the M-step so the
maximization requires numerical iteration, such as optimization procedures includ-
~ (0

ing Newton-type methods. Starting from the initial parameter value 1/)( ), the E-
and M-steps are repeated until convergence. After EM convergence is reached, a
probabilistic clustering of the genes into g clusters are obtained through the pos-
terior probabilities of component membership by assigning gene j to cluster k if

ékj = ma:c(ilj, veuy 2’gj).

There are some limitations to the application of EM algorithms. One major draw-
back is that the covariance matrix of the estimated parameters are not produced
as an end-product of the algorithm. Another issue with the application of EM al-
gorithm is that the speed of convergence can be very slow in some situations, for
example, when the proportion of missing data is high. To speed up the estimation
procedure, we propose a hybrid estimation algorithm for our model-based clustering
approach. For a fixed number of components g, we use a combination of the EM algo-
rithm and the quasi-Newton algorithm to obtain MLE’s of parameters in our mixture
model. Redner and Walker (1984) noted from their study that 95% of the change
in log-likelihood from initial evaluation to the maximum value generally occurred
within the first five EM iterations, thus we propose an estimation procedure which
starts with running five (or ten) EM iterations to approach the near-neighbourhood
of the ML estimates, and then switches to the quasi-Newton method for rapid con-
vergence. These methods are referred to as EMQN5 and EMQN10 (with five and
ten EM iterations before switching to quasi-Newton method respectively).

3 Application to real data

The goal of the Drosophila Transcriptome project (Graveley et al., 2011) is to exam-
ine developmental stages spanning the life cycle of Drosophila melanogaster (fruit
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flies). The sample consisted of 542 genes and each of the 12 sampling time point
corresponds to two hours. To account for the different gene lengths (to avoid gene-
length bias), RPKM (reads per kilobase of exon model per million mapped reads)
values were calculated and used as the gene expression measure for all genes. Upon
obtaining the RPKM values for the genes, we applied the clusering algorithms using
EM and hybrid-EM (EMQN5, EMQN10) to fit two- to six-component models to see
the clustering effects and used BIC to select the optimal model.

The BIC values obtained from the different models showed that the four-component
model can best represent the gene profiles over-time and the trajectories are shown
in Figure 1. EM and EMQN10 both estimated very similar trajectories and cluster
proportions, with three main groups of genes with decreasing expression patterns
and one small group (7.6%) of genes having an almost bell-shaped expression pattern
over time. The small cluster of genes showed an increasing expression level and
then decreased back down to the initial starting level. On the other hand, EMQN5
estimated four groups at different cluster proportions with decreasing expression
patterns. This might be due to the EMQN5 algorithm being trapped at a local
maximum point during the ML estimation while EM and EMQN10 were able to
find the global maximum point with more EM iterations performed than EMQN5.

EM: 4-group model EMQNS: 4-group model EMQN10: 4-group model

cluster 1: 38 80%
cluster 2: 34 .68%
cluster 3: 18.94%
cluster 4: 7 59%

—&— cluster 1: 37.41%
—— cluster 2: 24 96%
—=— cluster3:21.12%
—&— cluster4: 16.51%

cluster 1: 38 86%
cluster 2: 34.54%
cluster 3: 19.02%
cluster 4: 7 58%

time time time

Figure 1: Real data analysis: four-component models.

4 Conclusion

Statistical models for analyzing RNA-seq data has recently become a popular re-
search area in the literature of statistical genetics. To our knowledge, no model
framework has been developed for cluster analysis of RNA-seq data focusing on the
time-course experiment setting. We propose a clustering algorithm for discovering
gene expression patterns in time-series RNA-seq data. The algorithm is based on
negative binomial models in the time-course setting and can be applied to RNA-
seq data, as well as other types of count data with over-dispersion. We propose
an EM clustering method and two EM/quasi-Newton hybrid algorithms to improve
on the speed of the EM clustering. We demonstrate that our proposed algorithms
perform well on cluster analysis of time-course count data with over-dispersion.
Applications to RNA-seq data illustrate that our model-based clustering approach

p.5048



Proceedings 59th 1S World Satistics Congress, 25-30 August 2013, Hong Kong (Session CPS201)

produces meaningful clustering results that can enhance researchers’ understanding
about gene expression patterns over time.
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