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Abstract

Controlled branching processes are stochastic growth population models in
which the number of individuals with reproductive capacity in each generation
is controlled by a deterministic function. The behaviour of these populations is
strongly related to the main parameters of the offspring distribution. In practice
these values are unknown and their estimation is necessary. Usually it must be
observed the whole family tree up to a given generation in order to estimate the
offspring distribution. In this work, we deal with the problem of estimating the
main parameters of the model assuming that the only observable data are the
total number of individuals in each generation. We set out the problem in a
nonparametric framework and obtain the maximum likelihood estimator of the
offspring distribution using the expectation-maximization algorithm.

Keywords: Controlled process, offspring distribution, maximum likelihood esti-
mation, expectation-maximization algorithm.

1. Introduction
The standard branching process (also called Bienaymé-Galton-Watson pro-

cess) is not always adequate to describe actual phenomena. There are many
variants that have been proposed to deal with particular problems. One of them
is the Controlled Branching Process (CBP) in which the number of individuals
(particles) with reproductive capacity in each generation is governed by a con-
trol function φ (which could be deterministic or random). These processes were
introduced by Sevastyanov and Zubkov (1974), and include as particular cases,
some other modifications of the standard branching process (e.g. the Bienaymé
Galton-Watson process with immigration) or even the standard branching pro-
cess.

The probabilistic theory of CBPs, in particular the study of its extinction
problem and its limiting behaviour, has been extensively investigated, see for
example Bagley (1986), González et al. (2005) (and references therein) and Sev-
astyanov and Zubkov (1974). The presence of the control mechanism makes
complex the study of this kind of process, nevertheless it allows to model a much
greater variety of behaviours than the standard branching process.

In practice, the offspring distribution is usually unknown, and need to be esti-
mated to guarantee the applicability of these models. Inferential studies for CBPs
from a frequentist viewpoint may be found in González et al. (2004), González
et al. (2005) and Sriram et al. (2007).

The purpose of this article is to consider the estimation of the offspring law
(and some derived parameters) of a controlled model (with deterministic control
function) from the general nonparametric outlook. We begin in Section 2 with a
brief description on CBP, where some notation and basic results are provided. In
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Section 3 we consider the estimation of the offspring distribution. This section
is split in two subsections. The first one is devoted to exposing how to obtain
maximum likelihood estimators (MLE) of the parameters based on the observa-
tion of the entire family tree. Actually we review the results given in González
et al. (2004). In the second part, since usually it is not possible to observe in
practice the entire family tree, a more realistic sample is considered, that given
only by the total number of individuals and progenitors in each generation. The
problem of obtaining MLEs based on this sample is tackled as an incomplete data
problem. To deal with it, we use the Expectation-Maximization (EM) algorithm
(see McLachlan and Krishnan (2008)).

2. Probability Model
A CBP is defined recursively as follows:

Z0 = N, Zn+1 =
φ(Zn)∑
j=1

Xnj n = 0, 1, . . . (1)

where the empty sum is considered to be 0, N is a non–negative integer, {Xnj :
n = 0, 1, . . . ; j = 1, 2, . . .} is a sequence of i.i.d. non-negative integer-valued
random variables, with {pk}k≥0 being the common probability distribution (re-
production law or offspring distribution) and with φ being a function that is
non–negative and integer–valued for integer–valued arguments.

Intuitively, Zn denotes the number of individuals (particles) in the n-th gen-
eration. Thus, if φ(Zn) < Zn then Zn−φ(Zn) individuals are artificially removed
from the population and, therefore, they do not participate in the future evolu-
tion of the process. If φ(Zn) > Zn then φ(Zn)− Zn new individuals of the same
type are added to the population participating under the same conditions as the
others. No control is applied to the population when φ(Zn) = Zn. Obviously, if
φ(n) = n for all n, we obtain the standard branching process.

It is easy to verify that {Zn}n≥0 is a Markov chain with stationary transition
probabilities.

In the following, we assume that p0 > 0 and φ(k) = 0 if and only if k = 0,
in consequence 0 is an absorbing state and the states k = 1, 2, . . . are transient.
Whence it is verified the extinction-explosion dichotomy, that is P [Zn → 0] +
P [Zn →∞] = 1.

We also suppose that the mean and variance of the reproduction law are finite,
i.e. m =

∑∞
k=0 kpk <∞ and σ2 =

∑∞
k=0(k −m)2pk <∞.

3. Maximum Likelihood Estimators of the Offspring Distribution
We consider in this section the MLEs of the probabilities pk, k = 0, 1, . . ., i.e.,

of the reproduction law. First, we assume that the entire family tree is observed
until a given generation. Second, we consider that only the total number of
individuals and progenitors in each generations are observed.

3.1 Based on the entire family tree
We consider that the entire family tree up to the current nth generation can

be observed, i.e., {Xlj : j = 1, . . . , φl(Zl); l = 0, 1, . . . , n − 1}. Let Zl(k) =∑φ(Zl)
j=1 I{Xlj=k}, k ≥ 0, with IA standing for the indicator function of the set A.
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Intuitively, Zl(k) represents the number of progenitors at the lth generation with
exactly k offspring. It is deduced that

φ(Zl) =
∞∑
k=0

Zl(k) and Zl+1 =
∞∑
k=0

kZl(k), l ≥ 0

Let also Yj(k) =
∑j

l=0 Zl(k), j ≥ 0, that is, the accumulated number up to
generation j of progenitors that give rise to exactly k offspring. Moreover, denote
Yn =

∑n
k=0 Zk and ∆n =

∑n
k=0 φ(Zk), n ≥ 0, that is the total progeny and the

total number of progenitors, respectively, up to generation n.
Finally, let denote Z∗n = {Zl(k), k ∈ S, l = 0, 1, . . . , n− 1}.
The following result, given in González et al. (2004), provides us the MLE of

the offspring law as well as the MLEs of the offspring mean and variance.

Theorem 1 Let {Zn}n≥0 be a CBP. The MLE of pk for k ≥ 0, based on Z∗n =
{Zl(k) : l = 0, . . . , n− 1; k = 0, 1, . . . } is:

p̂k =
Yn−1(k)
∆n−1

, k = 0, 1, . . . (2)

Moreover, the MLEs of the parameters m and σ2, are, respectively

m̂ =
Yn − Z0

∆n−1
and σ̂2 =

∞∑
k=0

(k − m̂)2p̂k.

Remark 1

1. The strong consistency and asymptotic normality on the non-extinction set
of these estimators were established in González et al. (2004, 2005).

2. It can be proved (see González et al. (2004)) that m̂ is also the MLE of m
based on the sample {Z0, φ(Zl), Zl+1, l = 0, . . . , n− 1}.

3.2 Based on the population size in each generation: EM-Algorithm
In real situations it is difficult to observe the whole family tree up to the

current generation or even the random variables Zl(k), k ≥ 0, l = 0, . . . , n − 1.
Hence, in this subsection we assume the more realistic requirement that these are
unobservable, being the observable data only the total number of individuals and
progenitors in each generation, that is Zn = {Z0, φ(Zl), Zl+1, l = 0, . . . , n − 1}.
Then, one is faced with an incomplete data estimation problem. In such a case,
it seems appropriate to use an Expectation-Maximization (EM) algorithm (see
McLachlan and Krishnan (2008)), in order to obtain MLEs. In our case, this
algorithm is an iterative method which starts with certain initial values of the
parameters p = {pk}k≥0 and gives rise to a sequence of vectors which, under
certain conditions, converges to the MLEs based on the sample Zn. Each iteration
of the method consists of two steps. In the first step (E step), the expectation of
the complete log-likelihood is calculated using the distribution of the unobserved
data. The second step (M step) consists of finding the values of the parameters
which maximize the expectation that had been calculated in the E step. The
E and M steps are repeated until convergence is attained. In our case, starting
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with initial values p(0) = {p(0)
k }k≥0, we shall obtain a sequence {p(i)}i≥0 which is

updated in each iteration of the method, as will be described in the following.

3.2.1 Step E
We shall develop the E step of the EM algorithm in the (i + 1)-th iteration.

Let, for each i, p(i) = {p(i)
k }k≥0 be the vector obtained in the i-th iteration and

Z∗n|(p(i),Zn) the distribution of the latent vector Z∗n given the sample Zn and
the parameters of the model p(i). For simplicity, we shall write

E∗i [·] := EZ∗n|(p(i),Zn)[·]

It is not hard to obtain the complete log-likelihood

`(p |Z∗n, Zn) = `(p |Z∗n) =
n−1∑
l=0

log
(

φ(Zl)!∏∞
k=0 Zl(k)!

)
+
n−1∑
l=0

∞∑
k=0

Zl(k) log pk,

which depends on the variables Zl(k), l = 0, . . . , n − 1, k ≥ 0, which are not
observed. Then the expected value of the complete log-likelihood with respect to
the available data (p(i),Zn) is given by:

E∗i [`(p |Z∗n, Zn)] = E∗i

[
n−1∑
l=0

log
( φ(Zl)!∏∞

k=0 Zl(k)!

)
+
n−1∑
l=0

∞∑
k=0

Zl(k) log pk

]

=
n−1∑
l=0

E∗i

[
log
( φ(Zl)!∏∞

k=0 Zl(k)!

)]
+
n−1∑
l=0

∞∑
k=0

E∗i
[
Zl(k)

]
log pk (3)

Therefore, in order to obtain the expected value of the complete log-likelihood,
we must obtain the distribution of Z∗n given p(i) and Zn.

Let zl(k) ≥ 0, l = 0, . . . , n − 1, k ≥ 0, be non-negative integers, zl+1 =∑∞
k=0 zl(k), φ∗l =

∑∞
k=0 zl(k) = φ(zl), then

P
[
Zl(k) = zl(k), k ≥ 0, l = 0, . . . , n− 1

∣∣Z0 = z0, Zl+1 = zl+1, φ(Zl) = φ∗l , l = 0, . . . , n− 1
]

=

=
P
[
{Z0 = z0} ∩

⋂n−1
l=0 {Zl+1 = zl+1, φ(Zl) = φ∗l , Zl(k) = zl(k), k ≥ 0}

]
P
[
{Z0 = z0} ∩

⋂n
l=0{Zl+1 = zl+1, φ(Zl) = φ∗l }

]
=

n−1∏
l=0

P
[
Al|
⋂l−1
j=0 Aj ∩A

]
P
[
Bl|
⋂l−1
j=0Bj ∩A

] (4)

where A = {Z0 = z0} and for each l = 0, . . . , n− 1,

Al = {Zl+1 = zl+1, φ(Zl) = φ∗l , Zl(k) = zl(k), k ≥ 0}
= {Zl(k) = zl(k), k ≥ 0}

Bl = {Zl+1 = zl+1, φ(Zl) = φ∗l }.

Now

P

[
Al|

l−1⋂
j=0

Aj ∩A
]

= P
[
Zl(k) = zl(k), k ≥ 0|Zl = zl

]
, (5)

and

P

[
Bl|

l−1⋂
j=0

Bj ∩A
]

= P
[
Zl+1 = zl+1, φ(Zl) = φ∗l |Zl = zl

]
. (6)
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From (5) and (6) we obtain:

P
[
Zl(k) = zl(k), k ≥ 0, l = 0, . . . , n− 1

∣∣Z0 = z0, Zl+1 = zl+1, φ(Zl) = φ∗l , l = 0, . . . , n− 1
]

=

=

n−1∏
l=0

P
[
Zl(k) = zl(k), k ≥ 0|Zl = zl

]
P
[
Zl+1 = zl+1, φ(Zl) = φ∗l |Zl = zl

]
=

n−1∏
l=0

P
[∑φ∗l

i=0 I{Xli=k} = zl(k), k ≥ 0
]

P
[∑φ∗

l
i=0Xli = zl+1

]
=

n−1∏
l=0

1

P
[∑φ∗

l
i=0Xli = zl+1

] · φ∗l !∏∞
k=0 zl(k)!

∞∏
k=0

p
(i)
k

zl(k)

Taking into account that zl+1 =
∑∞

k=0 kzl(k) and φ∗l =
∑∞

k=0 zl(k), for each
l = 0, . . . , n− 1, the infinite products on the latter expression are actually finite,
because almost all zl(k) are null.

Computationally, to sample from Z∗n|(p(i),Zn) it is enough to sample generation-
by-generation. With l = 0, . . . , n − 1 fixed, and given Zl+1 and φ(Zl), we have
shown that this can be done by suitably normalizing the probabilities of a multi-
nomial distribution of size φ(Zl) and probability p(i).

3.2.2 Step M
The M step consists of finding the values of the parameters p = {pk}k≥0 which

maximize the expectation of the complete log-likelihood. This expectation has
been calculated previously in the E step. In our case, we must find the vector
p(i+1) = {p(i+1)

k }k≥0 which maximizes the expression (3) subject to the constraints∑∞
k=0 p

(i+1)
k = 1, p(i+1)

k ≥ 0, k = 0, 1, . . .. Following a similar argument to that
used in the calculation of the MLEs based on the observation of the complete
family tree (see González et al. (2004)), one obtains that p(i+1) = {p(i+1)

k }k≥0, is
given by, for each k ≥ 0

p
(i+1)
k =

∑n−1
l=0 E

∗
i [Zl(k)]∑∞

k=0

∑n−1
l=0 E

∗
i [Zl(k)]

=
∑n−1

l=0 E
∗
i [Zl(k)]∑n−1

l=0 φ(Zl)
.

Intuitively, p(i+1)
k is the ratio of the average number of progenitors which have

generated k offspring to the total number of progenitors.
The values obtained in the M step, p(i+1) = {p(i+1)

k }k≥0, are used to begin
another E step and the process is repeated until some convergence criterion is
verified, in which case the process stops and the final values are denoted by p̂EM .
In McLachlan and Krishnan (2008) it is shown that, under general conditions of
differentiability and continuity of the expectation of the complete log-likelihood
function, estimates obtained using the EM algorithm converge to a stationary
point of the incomplete data likelihood function. The multinomial structure of
our complete likelihood function means that usually those conditions are verified,
and also that the incomplete data likelihood function is unimodal. Then, in this
case, p̂EM is the MLE of p based on Zn, which we call expectation-maximization
MLE.

The following summarizes our proposed EM algorithm to estimate the pa-
rameters of the model:
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Step 0 i=0. Set each value 0 < p
(0)
k < 1.

Step 1 E Step. Based on p(i),

(a) determine Z∗n|(p(i),Zn),

(b) calculate E∗i [`(p |Z∗n, Zn)].

Step 2 M Step. Calculate p(i+1) = arg maxp E∗i [`(p |Z∗n, Zn)]

Step 3 If max{|p(i+1)
k − p(i)

k |, k ≥ 0} is less than some convergence criterion,
stop and denote by p̂EM these final estimates. Otherwise, increment
i by 1 and repeat steps 1-3.

Finally, we would point out that since m and σ2 are obtained from p, then,
from p̂EM one can obtain the expectation-maximization MLEs for m and σ2

based on Zn, which will be denoted by m̂EM (notice that this is the same that
m̂ given in Theorem 1) and σ̂2

EM , respectively. Also, one can obtain a sample of
the distribution of Zn+s knowing Zn for any s > 0 by simulating, through the
Monte-Carlo method, s generations of a CBP starting with Zn and considering
p̂EM as the parameters of the model. This allows one to forecast the number of
individuals and couples for unobserved generations.
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