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Abstracts

We propose testing methods for detecting the difference of two mean curves in longitu-
dinal data using the stationary bootstrap when the data of two groups are not paired. For
the detection of mean difference of two groups, we here consider the following four types
of test statistics: (i) sum of absolute values of difference between two mean sequences,
(ii) sum of squares of difference between two mean sequences, (iii) estimator of area-
difference between two mean curves, and (iv) difference of kernel estimators based on
two mean sequences. The stationary bootstrap is used to approximate the null distribu-
tion of each test statistic. Our approaches of block resampling generate a resample with
replacement from blocks of observations. Monte Carlo simulations are conducted in or-
der to investigate finite sample behavior of the sizes and powers of the proposed tests.
We also show an example of how to use the above methods for analyzing a real data.

Keywords: block resampling, comparison of mean curves, sizes and powers of tests

1. Introduction
Comparing two means or regression curves of two samples is an important problem in
statistical inference. Suppose now that there are two samples given by{Yi(t)}q1

i=1 and
{Xj(t)}q2

j=1 for t = 1, . . . ,n, and assume that they are mutually independent, whereq1

andq2 are numbers of subjects, andn is the number of observed points. We also assume
that, for fixedt, Yi(t) andXj(t) are independent overq1 andq2 subjects, respectively.
Then we consider the model{

Yi(t) = p1(t)+ εi(t), i = 1, . . . ,q1,

Xj(t) = p2(t)+η j(t), j = 1, . . . ,q2,
(1)

where p1(t) and p2(t) are unknown regression functions, andεi(t) and η j(t) are the
error terms having means 0 and finite variances, respectively. Then, we are interested in
a testing problem

H0 : p1(t) = p2(t) for all t vs. H1 : p1(t) ̸= p2(t) for somet, (2)

whereH0 andH1 denote the null and alternative hypotheses.
In this paper, we propose testing methods to detect the significant difference between

p1(t) andp2(t) using the stationary bootstrap (Politis and Romano, 1994). In Section 2
we propose testing methods using four types of test statistics and stationary bootstrap. In
order to investigate the properties of sizes and powers of the proposed testing methods,
Monte Carlo simulations are carried out in Section 3, and some concluding remarks and
results of a real data analysis are summarized in Section 4.
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2. Testing Methods
There are some approaches to detecting the difference between two mean curves,p1(t)
andp2(t), in (1). The following statistic is proposed by Hall and Hart (1990):

Sn = Sn(D1, . . . ,Dn) =

n−1

∑
j=0

(
j+g

∑
t= j+1

Dt

)2
[n

n−1

∑
t=1

(Dt+1−Dt)
2

2

]−1

, (3)

whereDt = Yt −Xt for t = 1, . . . ,n or Dt = Yt−n −Xt−n for t = n+ 1, . . . ,n+ g, Yt =

∑q1
i=1Yi(t)/q1, Xt = ∑q2

j=1Xj(t)/q2, g = [np] is the integer part ofnp, andp is a tuning
constant satisfying 0< p < 1 which is determined by the fully data-driven approach
in Hall and Hart (1990, pp.1043–1044). The statistic (3) is essentially based on kernel
estimators ofp1(t) andp2(t). As another type of test statistics, we here consider

T1n = T1n(D1, . . . ,Dn) =
n

∑
t=1

|Dt |, (4)

T2n = T2n(D1, . . . ,Dn) =
n

∑
t=1

D2
t . (5)

In addition to (3), (4) and (5), we also consider the following test statistic:

T3n = T3n(D1, . . . ,Dn) =
1
2

n−1

∑
t=1

(|Dt |+ |Dt+1|)I3,1+
1
2

n−1

∑
t=1

|Dt |2+ |Dt+1|2

|Dt |+ |Dt+1|
I3,2, (6)

whereI3,1 = I{DtDt+1 ≥ 0}, I3,2 = I{DtDt+1 < 0} and I{·} is the indicator function,
respectively. The statistic (6) is an estimator ofA=

∫
|p1(t)− p2(t)|dt constructed by

the trapezoidal rule with linear interpolations of adjacent observations. The quantityA is
0 underH0 and positive underH1. Thus, the hypothesis of our interest reduces to testing

H0 : A= 0 vs. H1 : A> 0. (7)

Note that the values ofSn andTrn (r = 1,2,3) will be small whenH0 is true, and large
whenH0 is false. Using these four statistics, we can measure the discrepancy between
p1(t) andp2(t).

In this section, we propose testing methods for the problem (2) or (7) using (3), (4),
(5) and (6). We call them “Mixed Stationary Bootstrap (MSB) Test.” The main ideas
of MSB test are to make blocks of observations in each sample similar to the stationary
bootstrap, and to generate resamples corresponding to two samples by drawing blocks
with replacement from the mixed (pooled) stationary bootstrap blocks. The latter is
motivated from the technique that can reflect the null hypothesis by resampling from a
combined sample. For i.i.d. data, the idea of combining observations of two samples and
drawing resamples with replacement from the combined sample is previously considered
by Boos et al. (1989) and Wang and Taguri (1996). The former is the test of homogeneity
of scale, and the latter is that of equality of two means.

For simplicity, letT be a generic notation for statistics (3), (4), (5) and (6). For a
given significance levelα, the unified testing algorithm forT together with Monte Carlo
method is described as follows.

1. Calculatetobs= T(Y,X) = T(D1, . . . ,Dn).

2. PutCy,t =Yt −Ȳ andCx,t = Xt − X̄ for t = 1, . . . ,n, whereȲ = ∑n
t=1Yt/n andX̄ =

∑n
t=1Xt/n.
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3. Divide{Cy,1, . . . ,Cy,n} and{Cx,1, . . . ,Cx,n} into n collections of blocks as follows:

ξy = {ξy(1,L1), . . . ,ξy(n,Ln)}, ξx = {ξx(1,M1), . . . ,ξx(n,Mn)},

whereξy(t, ℓ) and ξx(t, ℓ) are the blocks starting fromCy,t andCx,t with length
ℓ(≥ 1), that is,

ξy(t, ℓ) =

{
{Cy,t , . . . ,Cy,t+ℓ−1}, t = 1, . . . ,n− ℓ+1,

{Cy,t , . . . ,Cy,n,Cy,1, . . . ,Cy,t+ℓ−n−1}, t = n− ℓ+2, . . . ,n,

ξx(t, ℓ) =

{
{Cx,t , . . . ,Cx,t+ℓ−1}, t = 1, . . . ,n− ℓ+1,

{Cx,t , . . . ,Cx,n,Cx,1, . . . ,Cx,t+ℓ−n−1}, t = n− ℓ+2, . . . ,n.

L1, . . . ,Ln, M1, . . . ,Mn are independent and identically distributed to a geometric
distribution with parameterp= 1/ℓ.

4. Combineξy andξx, and put

ξpooled= {ξy(1,L1), . . . ,ξy(n,Ln), ξx(1,M1), . . . ,ξx(n,Mn)}.

5. DrawKy,b andKx,b blocks with replacement fromξpooled, and put

ξ∗b
y = {ξ(I∗b

1 ,L∗b
1 ), . . . ,ξ(I∗b

Ky,b
,L∗b

Ky,b
)}, ξ∗b

x = {ξ(J∗b
1 ,M∗b

1 ), . . . ,ξ(J∗b
Kx,b

,M∗b
Kx,b

)},

whereb= 1, . . . ,B,

ξ(t, ℓ) =

{
ξy(t, ℓ), 1≤ t ≤ n,

ξx(t, ℓ), n+1≤ t ≤ 2n.

I∗b
1 , . . . , I∗b

Ky,b
, J∗b

1 , . . . ,J∗b
Kx,b

are independent and identically distributed to a discrete
uniform distribution on{1, . . . ,n, n+ 1, . . . ,2n}. A pair of random variables,
(I∗b

i ,L∗b
i ) or (J∗b

i ,M∗b
i ), is one of{(1,L1), . . . ,(n,Ln), (1,M1), . . . ,(n,Mn)}, and

Ky,b = min{k : ∑k
i=1L∗b

i ≥ n}, Kx,b = min{k : ∑k
j=1M∗b

j ≥ n}, respectively.

6. Construct resamples,

Y∗b = {Y∗b
1 , . . . ,Y∗b

n }, X∗b = {X∗b
1 , . . . ,X∗b

n },

by putting the firstn elements ofξ∗b
y andξ∗b

x .

7. Calculatet∗b=T(Y∗b,X∗b)=T(D∗b
1 , . . . ,D∗b

n ) based on step 6, whereD∗b
t =Y∗b

t −
X∗b

t , t = 1, . . . ,n.

8. Repeating steps 5–7 an appropriate number of timesB, calculatet∗1, . . . , t∗B.

9. From steps 1 and 8, {
rejectH0 if ÂSL ≤ α,
acceptH0 if ÂSL > α,

where

ÂSL =
1
B

B

∑
b=1

I{t∗b ≥ tobs}.
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3. Numerical Study
In this section, we carry out Monte Carlo simulations in order to investigate finite sam-
ple behavior of the sizes and powers of the proposed tests in Section 2. Our study also
includes the comparison with Bowman and Young’s (1996) test for unpaired data (here-
after termed “BY” for short).

All our results are based on independent 2000 pairs of two samples,{Yi(t)} and
{Xj(t)}, whereB = 2000 replications of resampling in our tests are applied to ev-
ery two samples, and the nominal level isα = 0.05. We generate initial two samples
according to (1) whose means are specified byp1(t) = 0 and p2(t) = c, wherec =
0,0.2,0.4,0.6,0.8,1.0; c= 0 orc ̸= 0 corresponds to the null hypothesis or the alternative
hypothesis being true. As for the error terms,εi(t) andη j(t), we consider the following
Gaussian AR(1) errors:εi(t) = φεi(t −1)+ zi(t) andη j(t) = φη j(t −1)+ zj(t), where

zi(t)
i.i.d.∼ N(0,τ2

1), zj(t)
i.i.d.∼ N(0,τ2

2), φ = 0,±0.1,±0.2, τ2
1 = τ2

2 = (1−φ2)V(εi(t)), and
V(εi(t)) = 1,3,5. Due to limitations of space, we restrict ourselves to discussing the case
of V(εi(t)) = 3. Forn = 10 points, the cases of(q1,q2) = (10,10), (10,20), (10,30),
(20,20), (20,30), (30,30) are examined.

Since it is preferable that the empirical level is nearly equal to the nominal levelα, our
choice ofℓ in MSB test is done so that the empirical level is close toα. If there are some
candidates which have the same level errors, we make the conservative choice, viz., we
chooseℓ such that the empirical level is less than the nominal level. Further, if there are
some candidates whose empirical levels are equal, we selectℓ to maximize the empirical
power among them. The resulting choices ofℓ are summarized in Table 1.

We first summarize the results of the level studies in Table 2. The table shows that
the empirical levels of MSB test withTrn (r = 1,2,3) andSn tend to keep the nominal
level α, however it is not true for most cases ofφ = 0.2. Whenφ > 0, the level error of
T3n andSn seems to be slightly larger. On the other hand, BY test shows a tendency to
underestimate the nominal level except for the case of(q1,q2) = (10,10). Sn does not
need longerℓ thanTrn (r = 1,2,3) to keep the nominal level as is shown in Table 1.

Table 1: Optimumℓ in MSB test for V(εi(t)) = 3
(q1,q2) = (10,10) (q1,q2) = (10,20) (q1,q2) = (10,30)

φ T1n T2n T3n Sn T1n T2n T3n Sn T1n T2n T3n Sn

−0.2 6 6 7 2 1 1 9 3 2 1 6 2
−0.1 8 8 4 2 1 9 6 2 3 4 6 1

0 8 3 1 1 1 1 2 1 3 4 2 1
0.1 1 1 1 1 4 6 6 1 3 6 9 1
0.2 1 1 4 1 6 6 6 1 9 9 9 2

(q1,q2) = (20,20) (q1,q2) = (20,30) (q1,q2) = (30,30)
φ T1n T2n T3n Sn T1n T2n T3n Sn T1n T2n T3n Sn

−0.2 4 7 7 2 2 9 9 2 2 9 5 3
−0.1 4 7 3 2 2 9 3 2 4 9 3 2

0 5 9 1 1 1 4 1 1 9 7 1 1
0.1 9 1 1 1 7 1 1 1 2 1 3 1
0.2 6 1 8 2 8 2 9 1 2 1 6 1

Next, we discuss the power studies based on Figure 1. The vertical and horizontal
axes of Figure 1 are the empirical power of tests andc (0≤ c≤ 1) defined above. Since
we found similar tendencies among the six cases of(q1,q2), we show the results for
(q1,q2) = (10,10), (10,20), (20,20) with φ = 0,0.1,−0.2.
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Table 2: Empirical level for V(εi(t)) = 3
φ T1n T2n T3n Sn BY T1n T2n T3n Sn BY

(q1,q2) = (10,10) (q1,q2) = (20,20)
−0.2 0.030 0.036 0.049 0.043 0.061 0.034 0.038 0.051 0.044 0.021
−0.1 0.041 0.046 0.049 0.057 0.067 0.043 0.046 0.048 0.058 0.025

0 0.049 0.050 0.059 0.048 0.060 0.051 0.050 0.056 0.056 0.021
0.1 0.051 0.056 0.092 0.066 0.071 0.053 0.057 0.089 0.070 0.019
0.2 0.070 0.074 0.122 0.091 0.070 0.072 0.080 0.121 0.103 0.023

(q1,q2) = (10,20) (q1,q2) = (20,30)
−0.2 0.033 0.032 0.049 0.058 0.035 0.027 0.035 0.046 0.044 0.028
−0.1 0.036 0.040 0.052 0.049 0.035 0.035 0.042 0.052 0.052 0.026

0 0.050 0.048 0.064 0.049 0.035 0.045 0.050 0.061 0.047 0.022
0.1 0.051 0.051 0.083 0.073 0.035 0.050 0.054 0.092 0.071 0.029
0.2 0.064 0.068 0.107 0.106 0.034 0.069 0.075 0.119 0.093 0.026

(q1,q2) = (10,30) (q1,q2) = (30,30)
−0.2 0.022 0.021 0.041 0.044 0.036 0.035 0.040 0.049 0.058 0.026
−0.1 0.028 0.032 0.050 0.043 0.036 0.042 0.046 0.045 0.049 0.021

0 0.039 0.037 0.049 0.059 0.033 0.049 0.049 0.058 0.048 0.021
0.1 0.050 0.050 0.074 0.070 0.037 0.055 0.056 0.086 0.072 0.022
0.2 0.052 0.056 0.096 0.102 0.036 0.070 0.082 0.118 0.100 0.021
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Figure 1: Empirical power for V(εi(t)) = 3 and(q1,q2) = (10,10),(10,20),(20,20)
The panels (a)–(c), (d)–(f) and (g)–(i) are the cases of(q1,q2) = (10,10), (10,20) and
(20,20), respectively.

We can observe that the empirical power ofT3n is most powerful among those corre-
sponding to four statistics, and that the overall relationship among powers corresponding
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to MSB and BY tests is given byT3n ≥ T2n ≥ T1n ≥ Sn ≥ BY. This indicates the numeri-
cal superiority of MSB test using the four statistics in power. Especially, the superiority
of T3n in power is confirmed from Figure 1. As the number of subjects increases, the
empirical power is improved. For 0≤ c≤ 1, the empirical power ofT1n is nearly equal
to that ofT2n, thoughT2n is slightly higher thanT1n for most cases.

4. Concluding Remarks
In this paper we have proposed testing methods for detecting the difference of two means
in longitudinal data based on the stationary bootstrap. Our numerical studies indicate the
applicability of MSB test for weakly dependent data even when the observed points are
quite few. In some cases the effectiveness of application of block resampling could be
confirmed.
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Figure 2: Wind velocity data (left: satellite, right: radar)

Figure 2 is a real data of wind velocity measured by an artificial satellite and a radar
on the earth, whereq1 = q2 = 11 andn = 13. Applying MSB with every possibleℓ
and BY tests to the data given in Figure 2, we obtain the results that BY test rejects
the null hypothesis, however MSB tests do not. Therefore there is a possibility of the
significant difference between the satellite and radar in measuring wind velocity. How-
ever, the problem on the selection ofℓ in the block resampling is very important, and the
development of a fully data-driven approach to selecting block length in MSB test will
be needed for practical data analyses.
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