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Abstract

Multiple correspondence analysis is a simple method for analyzing multivariate categor-
ical data. The method has been extended to generate cluster structures between respon-
dents and variable categories by combining multiple correspondence analysis with two-
way clustering (Hwang and Dillon, 2010). However, because clear boundaries are not
idenrifiable in many real-world clustering problems, hard classification methods such as
k-means clustering appear overly restricted. In this study, we propose a method simultane-
ously combines multiple correspondence analysis with two-way fuzzyc-means clustering,
which is an overlapping clustering method. We represent the classification structures of
respondents and categorical variables as fuzziness and hardness, respectively. To facilitate
the interpretation of the relationships between variable categories and the cluster structure
of respondents, the method provides a low-dimensional map that simultaneously displays
the object scores of respondents, variable categories, and cluster centroids. The utility of
the proposed method in real data is assessed by comparing the results of our simultaneous
approach with those of multiple correspondence analysis.
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1. Introduction

Multiple correspondence analysis (MCA) is a simple method for analyzing multivari-
ate categorical data. Based on categorical principal components analysis, MCA describes
interdependencies among categories by assigning coordinates to respondents and to the
response categories of dummy-coded multiple categorical data. MCA has been combined
with k-means clustering in a unified framework (Hwang et al., 2006). Because it accom-
modates cluster structures between respondents and variable categories, this approach is
useful for categorizing large respondent data sets. Moreover, it jointly displays variable
categories and cluster centroids of respondents in a low-dimensional space. Combined
MCA and cluster analysis involves tandem analysis, a two-step sequential approach in
which objects and variables are clustered following dimensional reduction of variables.

The simultaneous approach has recently been extended by combining MCA with two-
way clustering (Hwang and Dillon, 2010), which attempts to classify both respondents and
variable categories from multivariate categorical data. Two-way clustering is preferable to
one-way clustering, because the former naturally relates the characteristics of respondent
clusters to variable categories. The difference between the two-way clustering approaches
is visualized in the Figure 1. One-way clustering identifies clusters of respondents only,
without regarding the variable categories. Two-way clusteing, on the other hand, attempts
to classify both rows (respondents) and columns (variable categories) in a two-way data
matrix. However, hard classification methods such ask-means clustering appear to be
prohibitively restrictive in combined MCA/two-way clustering, because many real-world
problems lack clear cluster boundaries. We consider that fuzzy respondent memberships
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Figure 1: Difference between one-way clustering and two-way clustering.

can be realized by overlapping clustering. Such a classification scheme, in which respon-
dents are assigned to multiple clusters by their degree of fuzzy membership, can potentially
provide more insights into the structure of a dataset.

In this study, we propose a method that simultaneously combines MCA with two-
way fuzzyc-means clustering. The classification structures of respondents and categorical
variables are represented as fuzziness and hardness, respectively. Using this approach,
we obtain fuzzy clusters that exclusively relate a subgroup of respondents to a subset of
categorical variables. The method provides a low-dimensional map that simultaneously
displays the object scores of respondents, the variable categories, and cluster centroids,
thereby facilitating interpretation of the relationships between variable categories and the
cluster structure of the respondents. This approach reveals clustering of variable categories
and respondents. To demonstrate the utility of the proposed method, we compare the
results of our simultaneous approach with those of MCA.

2. The proposed method

Let Zj be ann by pj matrix of thej-th dummy-coded categorical variable, wheren
is the number of respondents andpj is the number of response categories in the variable
j (= 1, · · · , J). This matrix assembled from multiple categorical data. LetF be ann by
d matrix of ad-dimensional representation ofJ categorical variables. LetWj be apj by
d matrix of weights, also called category quantifications, assigned to response categories
of the j-th variable. Denote the prescribed number of clusters byC, and denoteuci as a
membership value for respondent(i = 1, · · · , n) in thec-th cluster(c = 1, · · · , C). Let
Um

c be ann by n diagonal matrix ofuci. Denote the prescribed fuzzy weight scalar by
m. Let Vj be apj by C matrix of indicator variables providing the cluster memberships
of response categories of thej-th categorical variable. Letγc be ad by 1 vector of the
centroids of thec-th cluster ind-dimensions. LetΓ be aC by d matrix of the centroids of
the clusters (where the rows ofΓ are theγc). Let 1n be ann by 1 vector, and denote the
prescribed nonnegative scalar weights asλ1, λ2, andλ3.
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The objective of the proposed method is to classify variable categories and respondents
by combining MCA with two-way fuzzyc-means clustering. To this end, our method dis-
plays variable categories and centroids of respondent clusters in a low-dimensional space.
This problem is equivalent to minimizing the following expression:

Φ = λ1

J∑
j=1

||F − ZjWj ||2 + λ2

C∑
c=1

||F − 1nγ
′
c||2Um

c
+ λ3

J∑
j=1

||Wj − VjΓ ||2

where ||M ||2H = tr(M
′
HM) with respect toF , Wj , Uc, Vj , Γ andγc, subject to

F
′
F = Id,

∑C
c=1 uci = 1. Id is a d by d identity matrix. Whenλ1 = 1, the first

term reduces to the standard MCA homogeneity criterion. The second and third terms
are equivalent to the fuzzyc-means criteria and the standardk-means criteria forF , Wj ,
respectively. Our proposed method is solved by minimizing these three terms simultane-
ously.

The nonnegative scalar weightsλ1, λ2, andλ3 can be varied according to the objec-
tives of the analysis, allowing researchers to investigate alternative solutions. We assign
heavy weights to clustering terms whose values of loss function are smaller than that of
MCA. We obtain a low-dimensional map that simultaneously displays the object scores of
respondents, the variable categories, and cluster centroids.

The loss function is minimized by an alternating least squares (ALS) algorithm, which
sequentially updates each unknown parameters (with other parameters fixed) until conver-
gence is reached. The ALS algorithm is detailed below:

Algorithm

Step0: Randomly select initial values forF , Wj , Uc, Vj , Γ , andγc.

Step1: UpdateF for fixedWj , Uc, Vj , andγc. This is equivalent to maximizing
tr(F

′
(λ1

∑J
j=1 ZjWj + λ2

∑C
c=1 Um

c 1nγc)) as follows: LetSVD(λ1
∑J

j=1 ZjWj +
λ2

∑C
c=1 Um

c 1nγc) = PDQ
′
. Then,F̂ = PQ

′
.

Step2: UpdateWj for fixedF , Vj , andΓ . Ipj is apj by pj identity matrix.

Ŵj =
(
λ1Z

′
jZj + λ3Ipj

)−1 (
λ1Z

′
jF + λ3VjΓ

)

Step3: Update membership parameteruci for fixedF , Wj , andγc. Insert the updated̂uci

into Uc. Definedci = (fi − γc)
′
(fi − γc). Then,uci is updated as follows:

ûci =

(
C∑

k=1

(
dci

dki

) 1
m−1

)−1

Step4: UpdateVj for fixed F , Wj , andΓ . This is equivalent to separately minimizing
the third terms of the objective function via the standardk-means algorithm.
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Step5: UptateΓ andγc for fixedF , Wj , Uc, Vj , Γ andγc.

γ̂c =

λ21
′
nUm

c 1n + λ3

J∑
j=1

V
′

jcVjc

−1 λ21
′
nUm

c F + λ3

J∑
j=1

VjcWj



Γ̂ =
C∑

c=1

γ̂c

Step6: Based on the result of Step5, return to Step1 or exit the algorithm (if the process
has converged).

The above algorithm monotonically decreases the loss function. The membership ma-
trix renders this algorithm rather sensitive to local optima. To ensure convergence to the
global optimum, the implementation of many randomly started runs is recommended.

3. Numerical example

The utility of the proposed method is compared to that of MCA combined with one-
way clustering and sequential two-way clustering approaches by numerical example. The
input data are television program preference data comprising three multiple-choice vari-
ables taken from a survey of 100 Japanese undergraduates (Adachi, 2000). Respondents
were asked to choose their one preferred category at each of three time points,t = 1 (first
year of junior high school),t = 2 (first year of high school), andt = 3 (first year of uni-
versity). Programs were divided into six categories: (1) animation, (2) cinema, (3) drama,
(4) music, (5) sport, and (6) variety. Thus, the dataset comprises preferences selected from
six television program categories at three time points.

First, the performance of our simultaneous approach is compared with that of MCA.
Figure 2 displays the two-dimensional map of the object scores of respondents and the
variable categories (denoted by labels such as “A1,” “C1,” and “D1;” for example, “A1”
denotes “animation” at the pointt = 1). Next, we apply our proposed method to the same
data. Figure 3 displays the two-dimensional map of the object scores of respondents, the
variable categories, and the centroids of three clusters ford = 2, c = 3, andm = 2. We
assigned three categorical variables, each containing six response categories(J = 3, pj =
6). The nonnegative scalar weights were set toλ1 = 0.2, λ2 = 0.4, andλ3 = 0.4.

In Figure 2, the object scores of respondents are scattered across the map. Because
no particular cluster structure emerges from MCA, the relationships between respondents
and variable categories are not readily interpreted. On the other hand, the proposed method
produces clear cluster structures between respondents and variable categories (Figure 3).
The graphical representation in Figure 3 is consistent with the clustering information pro-
vided in Table 1.

The first (majority) cluster, whose centroid is represented by “C1,” contains data from
66 respondents and 9 categories. The respondents in cluster 1 show a preference for drama
and music programs. The second cluster, whose centroid is represented by “C2,” is con-
structed from 14 respondents and 9 categories. The respondents in cluster 2 are likely
to watch animation and sport programs. Finaly, the third cluster, whose centroid is rep-
resented by “C3,” is generated from 20 respondents and 9 categories. The respondents
in this cluster prefer variety programs. In addition, the extent of fuzzy membership of
respondents is visible in Figure 3.
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Figure 2: Two-dimensional solution of MCA. Letters and numbers on the plot refer to pro-
gram categories and time points, respectively (respondents selected one of the six program
categories at each of three different time points).

Figure 3: Two-dimensional solution of our proposed method. The object scores (values of
fuzzy membership) are indicated by RGB colors. Triangles indicate the centroids of three
clusters (labeled “C1,” “C2,” and “C3”).
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Table 1: Cluster memberships of variable categories

Cluster1(n1 = 66) Cluster2(n2 = 14) Cluster3(n3 = 20)

A1 C1 V1
D1 S1 V2
M1 A2 V3
C2 S2
D2 A3
M2 S3
C3
D3
M3

The proposed method generates a graphical solution that is more easily interpretable
than that of MCA. In particular, the object scores of respondents and the weights of vari-
able categories are clearly clustered.

4. Conclusions

We propose a method that simultaneously combines MCA with two-way fuzzyc-
means clustering in multivariate categorical data. This method provides a low-dimensional
map that simultaneously displays variable categories and cluster centroids, thereby facil-
itating the interpretation of the relationships between variable categories and the cluster
structure of respondents.
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