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Abstract 

 
We proposed an illness-death model with Lin and Ying's additive hazard and 
additive frailty for the regression analysis on semi-competing risks problem in 
a general morbidity/mortality process. Comparing with the Cox-type hazard, 
the additive hazard function is more natural and properly partitions the effect of 
the covariate on one transition into the other transition, internal consistency in 
the illness-death model. In the proposed model, we adapted the additive frailty 
to describe the association between the covariates and failure time in terms of 
the risk difference rather than the risk ratio. For the inference, we considered a 
full maximum likelihood on the complete data and incorporated an EM 
algorithm to deal with frailty and Gauss-Laguerre quadrature method for 
calculating the expectations of the functions of frailty. The proposed model 
was applied to the data from a national intergroup trial in the 1980's to study 
the effectiveness of two adjuvant therapy regimens for the improvement of 
surgical cure rates in stage III colon cancer. We compared the group treated 
with levamisole plus fluorouracil with the untreated group using the semi-
competing risks model with cancer recurrence and death. 
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1. Introduction 
A typical complexity with survival data is that observations may be censored. 
When you have only one event of interest, survival analysis such as Kaplan-
Meier curves, log-rank tests, and Cox proportional hazard models can be 
appropriately used. These analyses generally assume that the censoring is non-
informative withdrawal. However, in a cancer study, when the risk of relapse is 
highly related to the risk of death, the time of relapse may informatively be 
censored by death. According to a recent study by Rosenkranz (2010), the 
analysis of non-fatal events without considering death as a possible outcome 
can be misleading if the correlation between the events and death is 
disregarded. A competing risk data analysis is one of the possible approaches 
in this situation. In a competing risk framework, the occurrence of any one type 
of event precludes all other types of events and then prevents observing their 
occurring times. That is, all competing events are mutually exclusive. By the 
way, in a general morbidity/mortality process, death can preclude the 
occurrence of disease, but not vice versa. Although relapsed cancer patients are 
observed in a first event, the time to death for these patients can still be 
observed after relapse. Relapsed cancer patients could survive for some while 
and die later from any cause. In these patients it is possible to observe both the 



time to relapse and the time to death with relapse. However, if a cancer patient 
dies before relapse, we can only observe the time to death without relapse. This 
is called a semi-competing risks problem (Fine, Jiang and Chappell, 2001). It 
consists of one non-terminal event and one terminal event, such as relapse and 
death in a cancer study.  
A typical example is a randomized clinical trial of nasopharyngeal cancer. This 
study was conducted to compare radiation therapy only with a combination of 
chemotherapy and radiation therapy treatment (Xu, Kalbfleisch and Tai, 2010). 
Two endpoints of interest were time to tumor recurrence and time to mortality. 
From the semi-competing risk problems, the tumor recurrence was considered 
as the non-terminal event while death was considered as the terminal event. 
There have been several studies about the regression analysis for the semi-
competing risks data. Firstly, Clayton copula model, a representative model in 
semi-competing risks problem, was researched by Fine (2001) and Peng and 
Fine (2007). Secondly, an illness-death model is another model in the semi-
competing risks problem (Frydman and Szarek, 2009). Xu, Kalbfleisch and Tai 
(2010) proposed the Cox-type illness-death model with shared frailty dealing 
with common unmeasured associated factors in subjects and used the non-
parametric maximum likelihood estimation for the inference. They indicated 
that Clayton copula models and the approaches involve similar assumptions to 
those underlying multiple decrement models for latent failure times and the 
interpretation of the marginal distribution of the non-terminal event is 
hypothetical.  
The motivation to focus on additive hazard models comes from the notation, by 
Klein (2006). He said that the additive hazard function is more natural and 
properly partitions the effect of the covariate on one transition into the other 
transition. That is, the additive hazard function satisfies internal consistency in 
multi-state models. Internal consistency means that the transition probability 
from one state to one of all possible states is the sum of the transition 
probabilities from one state to each possible state. 
In this study, we propose the illness-death model with Lin and Ying (1994)’s 
additive hazard and additive frailty for the regression analysis on the semi-
competing risks data. Additive frailty was applied to assess the within-group 
association for the case of paired observations by Lin and Ying (1997) and to 
the cluster failure data by Silva and Turkman (2004). Frailty was additively 
inserted into the hazard function that maintained an additive structure in turn. 
Lin and Ying (1997) explained that the additive frailty described the 
association between the covariates and failure time in terms of the risk 
difference rather than the risk ratio. There are some studies about multi-state 
models or illness-death models with the additive hazard function and  
multiplicative frailty (Pipper and Martinussen, 2004; Chong et al., 2011; 
Martinussen, Scheike and Zucker, 2011). This study could be the first clinical 
research showing the proposed model on the semi-competing risks problem. 
 
2. Results 
 
2.1 Notations 
We consider a clinical study of cancer patients to measure the treatment effect 
on cancer relapse and death in the present of semi-competing risks. This 
situation consists of three compartments, including ‘on study’, ‘relapse’ and 



‘death’. The ‘on study’ is the state occupied at time 0. For convenience, let us 
call ‘relapse’ as a non-terminal event and ‘death’ as a terminal event. 
Let T!",T!", and C! be the time to relapse, death and censoring times for the 
𝑖th patient, i = 1, ! ! ! . The observed event times are ! !" = min  (T!",T!",C!!  
and ! !" = !"# !(T!" ! ! ! ! . The censoring indicator is δ!", where j = 1,2 for the 
𝑖th patient, i=1,…,n. Y!" is the observed time for relapse, Y!" is for death and 
their observable time space is 0 < Y!" ≤ Y!". If δ!" = 0 and δ!" ! ! , then 
! !" ! ! !" ! ! !" . We consider common covariates, ! !  with different effects on 
three hazards of relapse, death without relapse and death with relapse. The 
observation data can be described as ! !" ! ! !" ! ! !" ! ! !" ! ! ! ! i = 1,… ,n. 
 
2.2 Models 
We proposed the conditional transition functions with additive type on the 
semi-competing risk.  
 

 λ! t!" u!, z! = λ!" t!" + u! + β!z! 
 λ! t!" u!, z! = λ!" t!" + u! + β!z! 
 λ!" ! !" t!" , u! , ! ! = ! !" ! !" ! ! ! ! ! ! ! ! !!!!!!!!!!!!!! ! ! !" ! !! !"   

 
The hazards λ!(!!!  and ! ! ! ! ! !  are the usual cause specific or crude hazard 
functions for the part of competing risks in which either relapse or death may 
occur first. The hazard λ!" ! ! ! !! ! !  defines the rate of death after the relapse at 
time ! ! ! ! ! . Frailty, U, can be considered as an additive risk from the 
heterogeneity among three hazards in a patient. The frailty was assumed to 
have a gamma distribution with mean 1, variance ! . The hazards are assumed 
to be independent of one another, given the frailty. 
 
2.3 Estimation 
The estimations for the model are based on the full likelihood function. The 
full likelihood gives the likelihood for the complete data with an unknown 
frailty. The Expectation-Maximization (EM) algorithm is a natural choice for 
parameter estimations. Numerical integration techniques, Gauss-Laguerre 
quadrature, were applied to calculate the expectation of the function of frailty. 
The baseline hazard is simply assumed to be piecewise constant in this study. 
The piecewise constant approach allows the hazard rate to change in non-
parametric ways. Approximate variances of the estimates are computed by 
Louis’ formula.  
 
2.4 Simulation 
We conducted simulations to evaluate the performance of the proposed model 
under several different scenarios. The main performance result for the 
proposed model is the following (see Table 1). 
 

Table 1. Simulation Result of the Proposed Model 
Parameter True Estimate Bias (Bias%) SD MSE CP 

N=300, Censoring=15%, and ! ! ! !!  

! !  1 1.023 0.023 ( 2.3) 0.297 0.288 0.952 

! !  1 1.012 0.012 ( 1.2) 0.287 0.289 0.955 



β! 1 1.030 0.030 ( 3.0) 0.336 0.328 0.947 

θ 0.3 0.315 0.015 ( 4.9) 0.168 0.124 0.863 

N=300, Censoring=15%, and θ = 0.8 

β! 1 1.013 0.013 ( 1.3) 0.269 0.272 0.954 

β! 1 1.016 0.016 ( 1.6) 0.291 0.273 0.939 

β! 1 1.029 0.029 ( 2.9) 0.355 0.345 0.939 

θ 0.8 0.779 -0.021 ( 2.6) 0.024 0.134 1.000 

Estimate is the mean of the parameter estimates (based on 1,000 replicates); Bias is the mean of the 
parameter estimates minus the true value; Bias(%) is the Bias rate (%) over the true value, 
|Bias|/True×100; SD is the empirical standard deviation of the parameter estimate; MSE is the mean 
value of the estimated standard errors; CP is the coverage probability of the nominal 95% confidence 
intervals. 
 
2.5 Colon cancer data 
We applied the proposed model to a clinical trial data of adjuvant 
chemotherapy for colon cancer. For this study, we focused only on the 
comparison between the observation and levamisole plus fluorouracil (Lev+5-
FU) groups on the semi-competing risks problem with cancer recurrence and 
death (see Table 2).  
 

Table 2. Result of Proposed model in the Colon Cancer Trial 
 Excess risk (SE) 95% CI P-value 

Lev+5FU vs. Observation      

Recurrence -39.66 11.99 (-63.17, -16.15) 0.001 

Death without recurrence -1.76 4.41 (-10.40, 6.88) 0.690 

Death with recurrence 152.68 81.58 ( -7.21, 312.58) 0.061 

Variance of frailty 0.78 0.11 ( 0.57, 0.99) 0.000 

Unit: per a 1,000 person year 

 
From the result, the treatment of Lev+5FU decreases the risk of cancer 
recurrence and death without recurrence but decreases survival time with 
recurrence. However, the treatment effect on survival time with recurrence is 
not statistically significant. These conclusions are in agreement with those in 
the research of Lin (1994) and He and Lawless (2003). 
 
3. Conclusions 
In biomedical studies, the non-terminal event such as relapse or recurrence is 
an important event in additional information about the death process. In the 
example of the colon cancer study, it was of interest to show the efficacy of 
treatment on both mortality and morbidity, because the relapse is a relatively 
strong indicator of death. Therefore, it will be useful to know whether the 
treatment reducing morbidity will also reduce mortality with morbidity. This 
situation can be treated on the semi-competing risks or the illness-death model 
in which the terminal event, death can preclude relapse, but not vice versa. 
In recent literatures, Xu, Kalbfleisch and Tai (2010) proposed a Cox-type 
illness-death model with multiplicative frailty for semi-competing risks 
problem. Chong et al. (2011) presented an illness-death model with additive-



type hazard function and multiplicative frailty. In contrast to the literature, in 
the proposed model, frailty is inserted additively. The proposed model 
maintains an additive structure for natural relationships. This idea is from the 
research by Silva and Turkman (2004) that adapted an additive frailty model 
for clustered failure data with a Bayesian point of view. 
As the result of the simulation, the estimates of the regressions and the 
piecewise hazard parameters generally have a good performance in whatever 
the association between relapse and death is mild or moderate. However, in the 
mild association between relapse and death, the parameter of frailty seems to 
be underestimated since the MSEs are less than the SDs. 
There are limitations in the proposed models. The piecewise baseline hazards 
are assumed to have different constants in the same intervals. Another 
limitation is that additive proposed models do not guarantee that the estimated 
hazard rates are greater than zero. 
In the future works, it is possible to be extended to a semi-parametric model 
with unspecified baseline hazards and to Aalen's flexible additive model over 
time. The goodness of fit assessment of the models could be a valuable 
research topic for real data analyses. 
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