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Abstract

In this paper firstly using a number theoretic result we have simplified the structure
of asymptotic dispersion matrix of the least squares estimators (LSEs) of multiple
chirp signal model. Secondly, we have proposed a type of sequential estimators,
which are strong consistent, for the same model, and provide an alternative way to
reduce the high dimensionality problem in optimization for LSEs, in a sequential
manner.
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1 Introduction

In this paper we consider the following multiple chirp model;

y(n) =
p∑

k=1

{
A0

k cos(α
0
kn+ β0

kn
2) +B0

k sin(α
0
kn+ β0

kn
2)
}
+X(n); n = 1, · · · , N. (1)

Here y(n) is the real valued signal observed at n = 1, · · · , N . For k = 1, · · · , p, A0
k,

B0
k are amplitudes, and α0

k and β0
k are frequency and frequency rate respectively.

The additive error {X(n)} is a sequence of stationary random variables (r.v.s) with
mean zero and finite fourth moment. Detail assumptions will be provided later.

The chirp signal model appears in the signal processing literature, and occurs
quite naturally, particularly in physics, sonar, radar and communications. Extensive
work on this model, mainly when p = 1, has been done by several authors. One
is referred to Kundu and Nandi (2008) and the references cited therein for detailed
literature. Saha and Kay (2002) introduced the multiple chirp signal model (1),
and provided the maximum likelihood estimators of the unknown parameters using
importance sampling procedure under the assumptions that X(n)’s are independent
and identically distributed (i.i.d.) normal r.v.s. Kundu and Nandi (2008) proved the
strong consistency and asymptotic normality of the LSEs of the model (1)when the



X(n)’s are obtained from a linear stationary process. Firstly the structure of the
dispersion matrix of the asymptotic distribution of the LSEs is quite complicated.
It was observed that the LSE of α0

k has the convergence rate Op(N
−3/2), whereas

the LSE of β0
k has the convergence rate Op(N

−5/2). But finding the LSEs is a
numerically challenging problem, if p ≥ 2. For the model (1), it involves solving a
2p-dimensional optimization problem. Therefore our second observation is, for large
p, it becomes a highly computer intensive method.

First aim of this paper is to provide a simplified structure of the dispersion ma-
trix of the asymptotic distribution of the LSEs using a number theoretic result of
Vinogradov (1954). The second aim is to provide an estimation procedure which is
computationally less demanding and produces efficient estimators of the unknown
parameters. If p is known, using the idea that the regressors vectors are orthogo-
nal, we provide a step by step sequential estimation procedure for estimating the
amplitudes, frequency and frequency rate. It is observed that 2p-dimensional opti-
mization procedure can be reduced to p sequential 2-dimensional (2-D) optimization
problems. Therefore for large p, the proposed sequential method is very effective.
If p is not known, and we fit a lower order model, i.e. when the assumed number of
components is less than the actual number of components then the proposed estima-
tors converge almost surely to true parameter values. If we fit a higher order model,
i.e. assumed number of components is more than the actual number of components,
then the amplitude estimates obtained after p-th step converge to zero almost surely.
Due to the complicated nature of the model, we could not establish the asymptotic
distribution of the proposed sequential estimators. Based on an unsolved conjecture
in number theory it can be shown that the asymptotic distribution of the LSEs and
the proposed sequential estimators are same. We perform some simulation experi-
ments and observe that the mean squared errors (MSEs) of the LSEs and sequential
estimators are very close to each other. Due to space restriction we are not providing
proofs and the simulation results. But we provide the analysis of two real data sets
for illustrative purpose. In subsequent sections we provide our findings.

Model Assumptions and Preliminary Results :

Assumption 1: The r.v.s X(n) satisfies the condition X(n) =
∑∞

j=−∞ a(j)e(n− j),
where {e(n)} is a sequence of i.i.d. r.v.s with mean zero,variance σ2 and finite fourth
moment, and

∑∞
j=−∞ |a(j)| < ∞.

We use the following notations; The parameter vector as θk = (Ak, Bk, αk, βk),
the true parameter vector as θ0k = (A0

k, B
0
k, α

0
k, β

0
k), for k = 1, · · · , p, and the param-

eter space as Θ = [−K,K]× [−K,K]× [0, π]× [0, π], K > 0.

Assumption 2: It is assumed that θ0k is an interior point of Θ, for k = 1, · · · , p, and
α0
k’s are distinct, and similarly β0

k’s are also distinct.

Assumption 3: A0
k’s and B0

k’s satisfy K2 > A02
1 +B02

1 > · · · > A02
p +B02

p > 0.

We require the following results based on Vinogradov (1954) for further devel-
opment.

Lemma 1: If (ω1, ω2) in (0, π)× (0, π), then except for countable number of points



the followings are true.

lim
N→∞

1

N

N∑
n=1

cos(ω1n+ ω2n
2) = lim

N→∞

1

N

N∑
n=1

sin(ω1n+ ω2n
2) = 0. (2)

For t = 0, 1, 2, lim
N→∞

1

N t+1

N∑
n=1

nt sin(ω1n+ ω2n
2) cos(ω1n+ ω2n

2) = 0, (3)

lim
N→∞

1

N t+1

N∑
n=1

nt cos2(ω1n+ω2n
2) = lim

N→∞

1

N t+1

N∑
n=1

nt sin2(ω1n+ω2n
2) =

1

2(t+ 1)
.

(4)

Lemma 2: If X(n) satisfies Assumption 1 then as N → ∞ and for s ≥ 0, i =
√
−1,

sup
α,β

∣∣∣∣∣ 1

N s+1

N∑
n=1

nsX(n)ei(αn+βn2)

∣∣∣∣∣ → 0 a.s. (5)

2 The Two Main Results

Asymptotic Distribution of the LSEs: Readers are referred to Kundu and
Nandi (2008) or www.isid.ac.in/ statmath/eprints/(isid/ms/2005/08) for the re-
sult of the asymptotic distribution of the LSEs where dispersion matrix is quite
complicated. Using Lemma 1 and Lemma 2, the following simplified version of the
asymptotic distribution of the LSEs can be obtained.

Theorem 1: If the Assumptions 1-3 are satisfied, then the LSEs of the unknown
parameters have the following asymptotic 4p variate normal distribution

((θ̃1 − θ01)D
−1, · · · , (θ̃p − θ0p)D

−1)
d−→ N4p(0, 2cσ

2Σ(θ0)) (6)

where Σ(θ0) is a 4p × 4p matrix having the following block-diagonal structure as

Σ(θ0) =


Σ1 0 · · · 0
0 Σ2 · · · 0
...

...
...

...
0 0 · · · Σp

 , c =
∞∑

j=−∞
a(j)2,

D = diag

(
1√
N

,
1√
N

,
1√
N3

,
1√
N5

)
is 4× 4 diagonal matrix and for k = 1, · · · , p,

Σk = 1

A0
k
2
+B0

k
2


1
2

(
A0

k
2
+ 9B0

k
2
)

−4A0
kB

0
k −18B0

k 15B0
k

−4A0
kB

0
k

1
2

(
9A0

k
2
+B0

k
2
)

18A0
k −15A0

k

−18B0
k 18A0

k 96 −90
15B0

k −15A0
k −90 90

 .

Sequential Estimation Procedure: Here we propose a sequential procedure to
estimate the unknown parameters of the model (1), and prove that they are strongly
consistent. Let us use the following notations. The N × 2 matrix W(α, β) is de-



fined as W(α, β) =


cos(α+ β) sin(α+ β)

cos(2α+ 4β) sin(2α+ 4β)
...

...

cos(Nα+N2β) sin(Nα+N2β)

 . At first step of sequential

method we minimize Q1(A,B, α, β) with respect to A,B, α, β, where

Q1(A,B, α, β) =

[
Y −W(α, β)

(
A
B

)]T [
Y −W(α, β)

(
A
B

)]
, (7)

and Y = [y(1), · · · , y(N)]T is the data vector. For fixed α and β

(Â(α, β), B̂(α, β)) = [W(α, β)TW(α, β)]−1W(α, β)TY. (8)

minimizes (7). Therefore, using the separable regression technique of Richards
(1961), the minimization of Q1(A,B, α, β) can be obtained by minimizing

R1(α, β) = Q1(Â(α, β), B̂(α, β), α, β) = YT (I−P1(α, β))Y (9)

with respect to (α, β), where P1(α, β) = W(α, β)
[
W(α, β)TW(α, β)

]−1
W(α, β)T

is the projection matrix on the column space of the matrix W(α, β). If (α̂1, β̂1)
are the minimizers of R1(α, β), then the estimators of A0

1, B
0
1 , α

0
1, and β0

1 become
Â1 = Â(α̂1, β̂1), B̂1 = B̂(α̂1, β̂1), α̂1, β̂1 respectively.

Now to compute the estimators of (A0
2, B

0
2 , α

0
2, β

0
2), we take out the effect of the

first component from the signal, i.e., we consider a new data vector

Y1 = Y −W(α̂1, β̂1)

 Â1

B̂1

 (10)

Then using the new data vector Y1, following the same procedure as before we get
Â2, B̂2, α̂2, β̂2, the estimators of A0

2, B
0
2 , α

0
2, β

0
2 respectively. Continuing in this man-

ner, at the k-th stage we can obtain estimators of A0
k, B

0
k, α

0
k, β

0
k, say Âk, B̂k, α̂k, β̂k

respectively.

For the consistency results of the proposed estimators we consider two cases
separately; (i) for lower order model and (ii) for higher order model. At first step
we have the following result.

Theorem 2: If the Assumptions 1-3 are satisfied then (Â1, B̂1, α̂1, β̂1) is a strongly
consistent estimator of (A0

1, B
0
1 , α

0
1, β

0
1).

The estimators obtained at the second step also are strongly consistent and for
subsequent steps 3 ≤ k ≤ p along same manner we get consistency. We have the
following results.

Theorem 3: If the Assumptions 1-3 are satisfied and p ≥ 2, then θ̂2, the estimator
obtained by minimizingQ2(A,B, α, β), whereQ2(A,B, α, β) is obtained by replacing
Y with Y1 in (7), is a strongly consistent estimator of θ02.



Theorem 4: If the Assumptions 1-3 are satisfied and p ≥ k, then the estimators
obtained at the k-th step are strongly consistent.

If the sequential process is continued even after p-th step, then we get:

Theorem 5: If the Assumptions 1-3 are satisfied, and if Âk, B̂k, α̂k, β̂k are the
estimators obtained at the k-step for k > p, then Âk → 0 a.s. and B̂k → 0 a.s..

Comments: If the following conjecture, see Montgomery (1990), holds then it
can be shown that the proposed sequential estimators have the same asymptotic
distribution as that of the ordinary LSEs.

Conjecture: If ω1, ω2, ω
′
1, ω

′
2 ∈ (0, π), then except for countable number of points

lim
N→∞

1√
NN t

N∑
n=1

nt cos(ω1n+ ω2n
2) sin(ω′

1n+ ω′
2n

2) = 0; t = 0, 1, 2. (11)

In addition if ω2 ̸= ω′
2, then

lim
N→∞

1√
NN t

N∑
n=1

nt cos(ω1n+ ω2n
2) cos(ω′

1n+ ω′
2n

2) = 0; t = 0, 1, 2. (12)

lim
N→∞

1√
NN t

N∑
n=1

nt sin(ω1n+ ω2n
2) sin(ω′

1n+ ω′
2n

2) = 0; t = 0, 1, 2. (13)

3 Real Life Data Analysis and Conclusions

Real Life Data Analysis: In this section we perform the analysis of two speech
signal data sets; “AHH” and “AWW” vowel sound mainly for illustrative purpose.
Both these data sets are obtained from a sound instrument at the Speech Signal
Processing laboratory of the Indian Institute of Technology Kanpur. There are 469
data points of “AHH” signal and 512 data points of “AWW” signal and they are
sampled at 10 kHz frequency. We have fitted the chirp signal model to these data
sets and use the proposed sequential method to compute the unknown parameters.
Since the number components of model is not known in this case, we use the Bayesian
Information Criterion (BIC) to estimate the number of components. The BIC takes
the following form

BIC(k) = N ln(SSE) +
1

2
(4k + ark + 1) ln(N)

in this case, where k is the number of components fitted in the model, ark is the
number of parameters fitted in the stationary process and N is the data size, SSE is
error sum of squares. We choose that model order for which the BIC is minimum.
For “AHH” data set, the estimate of p becomes 5, and for “AWW” it is 7. We
perform Dickey-Fuller test for checking the stationarity for the residuals, and in
both cases the null hypothesis cannot be rejected. We also provide the plots for the
fitted and predicted signals and they match quite well in both the cases.
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Figure 1: AHH :Original
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Figure 2: AWW :Original
signal
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Figure 3: AHH: Fitted
(Green) vs Original signal
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Figure 4: AWW: Fitted
(Green) vs Original signal
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Figure 5: AHH: BIC plot

6 6.5 7 7.5 8 8.5 9
5975

5980

5985

5990

5995

6000

6005

6010

6015

Figure 6: AWW: BIC plot

Conclusions: In this paper using a number theoretic result of Vinogradov (1954),
we provide a simplified form of the asymptotic dispersion matrix of the LSEs of mul-
tiple chirp signal model and observe that the LSEs of the different chirp components
are asymptotically independent. We also provide a sequential estimation procedure
of the parameters and prove their strong consistency. The proposed sequential
method can be very useful in fitting multiple chirp signal model, particularly when
the number of chirp components is large. We analyze two real data sets.
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