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Abstract

There is a growing interest in reconstructing climate using hierarchical models that link paleoclimate proxies
and instrumental records to an underlying latent climate process, as they allow for a full propagation of
uncertainties. A critical aspect of constructing such hierarchical models is to parameterize the forward model
that links the proxy with the climate process. Typically these forward models are either based on simplified
assumptions, such as a linear relationship between the proxy and climate, or by building physical models
(e.g., models for tree growth or heat propagation down boreholes) that may involve components that are
hard to parameterise and complicate the model fitting. In this work, statistical forward models that capture
necessary nonlinearities under a monotonicity constraint are embedded within a Bayesian spatio-temporal
hierarchical model for paleoclimate reconstruction. This methodology is then applied to the reconstruction
of temperatures based on tree ring density series, and results compared to reconstructions based on a linear
forward model.
Keywords: Bayesian methods, Monotonicity constraints, Spatio-temporal models, Tree ring densities.

1 Introduction

The aim of paleoclimate reconstructions is to predict a past space-time climate field (and its uncertainty)
on the basis of recent instrumental data, and measurements on paleoclimatic proxies such as tree rings, ice
cores, and lake floor sediments. While there are a number of algorithms available for producing spatial
reconstructions, there is a growing interest in the use of hierarchical, often Bayesian, models to relate the
instrumental and proxy-based data to the underlying latent climate field. For recent reviews of paleoclimate
reconstructions see, e.g., Jones et al. [2009], Hughes and Ammann [2009] and Tingley et al. [2012].

A key specification of a hierarchical paleoclimate reconstruction is the so-called forward model, that relates
the climate variable of interest to the measured proxies. In many reconstructions, a linear relationship
between the climate variable of interest and the proxy is assumed [Tingley et al., 2012]. A more sophisticated
approach is to embed physical understanding of each proxy’s response to variations in the climate into the
functional form of the forward model. For example, variants of the Vagonov-Shashkin model describe tree
ring widths as a non-linear function of soil moisture and temperature [Evans et al., 2006, Tolwinski-Ward
et al., 2011], while the pre-observation mean-surface air temperature model (POM-SAT) relates borehole
temperatures to surface temperatures via the heat equation [Harris and Chapman, 2001, Harris, 2007, Li
et al., 2010, Brynjarsdóttir and Berliner, 2011]. Defining physically-motivated forward models requires
an accurate mechanistic understanding of the proxy–climate relationship. In practice, model fitting can be
computationally demanding for certain choices of forward model. Also, limited understanding of certain
parts of the physical relationship can complicate the reconstruction.

A compromise it to allow for nonlinear statistical relationships between the proxy and climate variable,
while respecting the fact that in most practical applications it is reasonable to assume that the proxy–climate
relationship is monotonic. In what follows, we relate surface temperatures to maximum latewood tree ring
densities, using a scientifically motivated, non-linear forward model. We assume that tree ring growth in-
creases monotonically with increasing temperature between a certain range of temperatures, and asymptotes

Proceedings 59th ISI World Statistics Congress, 25-30 August 2013, Hong Kong (Session IPS006) p.53



at higher or lower values – reflecting the limited capacity for a tree to grow in all temperatures [c.f. the model
of Tolwinski-Ward et al., 2011]. We demonstrate the sensitivity of reconstructions to the choice of linear or
non-linear forward model within a fully hierarchical Bayesian spatio-temporal model, accounting for both
the uncertainty in the relationship between the proxy and climate and other uncertainties such as measure-
ment errors. We use a version of an established Bayesian hierarchical model for paleoclimate reconstruction
called BARCAST [Tingley and Huybers, 2010a,b], and compare reconstructions resulting from the linear
forward model used by BARCAST to those resulting from a non-linear but monotone forward model for the
proxy–climate relationship. In contrast to Hanhijärvi et al. [2013], the hierarchical approach adopted here
allows for a climate reconstruction in both space and time while making a similarly general assumptions
about the proxy–climate relationship. We introduce the data in Section 2, specify the model in Section 3,
provide our results in Section 4, and close with a discussion in Section 5.

2 Tree ring density and temperature data

We use the 5

o ⇥ 5

o gridded version of the maximum late wood tree ring density data set of Briffa et al.
[2002a,b], and restrict our analysis to the North American continent. A map of the locations of the instru-
mental records (Figure. 1a) shows that the records in the south and west of the spatial domain are generally
longer. The instrumental data set used here, the Climate Research Unit’s (CRU) gridded temperature prod-
uct [Brohan et al., 2006], is available on the same grid as the tree ring observations and likewise features
varying spatial and temporal coverage (Figure 1b). Both data set are reported as anomalies with respect to
climatological means, and both have been used extensively in reconstructions of past climate [e.g., Briffa
et al., 2002a,b, Rutherford et al., 2005, Mann et al., 2007, 2008, 2009]. Figure 2 displays a scatter plot of
the tree ring anomalies versus the instrumental anomalies, while the solid line shows a nonlinear regression
fit using the monotone penalized spline approach of Meyer [2012], with 4 knots. Ignoring any spatial and
temporal dependence in the data, we see a distinctly nonlinear relationship between the temperature and
tree ring density anomalies. This nonparametric fit does not make the scientifically motivated assumption,
formalized in the hierarchical Bayesian modeling framework developed in the next section, that the tree ring
response for sufficiently low temperature anomalies should be flat.

3 Nonlinear paleoclimatic reconstruction

Our goal is to predict an underlying latent spatio-temporal climate field given instrumental records and
paleoclimate proxy observations. More formally, let T ⇢ Z denote the time domain and D ⇢ Rp the spatial
domain. Let Y = {Y

t

(s) : s 2 D, t 2 T} denote the latent climate process at time t 2 T and spatial location
s 2 D; Z = {Z

t

(s) : s 2 D, t 2 T} the observed instrumental record; and P = {P
t

(s) : s 2 D, t 2 T}
the observed proxy records. In our application, Y is the latent space-time temperature process over North
America from the year 1400, Z is the gridded space-time temperature data product over North America
from 1850-2011, and P is the gridded tree ring density data product.

We follow a Bayesian hierarchical modeling framework as formalized in Tingley et al. [2012]. We assume a
standard measurement error model for the temperature data product: Z

t

(s) = Y
t

(s)+✏
t

(s), t 2 T, s 2 D,
where {✏

t

(s) : t 2 T, s 2 D} is an independent Gaussian process with mean 0 and variance �2. In relating
climate to the proxies, we consider the conditional distribution f(P

t

(s)|Y
t

(s) and make the simplifying
assumption of conditional independence over space and time. In some applications a non-normal distribution
for f is needed – for example in relating pollen counts to climate, f may be a binomial or more generally
a multinomial distribution [e.g. Haslett et al., 2006, Wahl et al., 2010]. Following earlier work [e.g., Briffa
et al., 2002a,b, Rutherford et al., 2005, Mann et al., 2007, 2008, 2009, Tingley and Huybers, 2010a, Tingley
et al., 2012], we assume for the tree ring densities used here that f is a normal density: P

t

(s) = h(Y
t

(s)) +
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Figure 1: (a) Summary of the locations of the tree-ring density records. Shading indicates the number of years
of observations at each location, the crosses indicate crossvalidation locations, and the numbered locations will be
summarized later. (b) As with (a) but for the instrumental data.
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Figure 2: A scatterplot of the tree ring density anomalies versus the instrumental anomalies. The black solid line
shows a monotone regression fit to these data.

⌘
t

(s), t 2 T, s 2 D. The first term, h(Y
t

(s)), is the component of the proxy attributable to climate, and is
the main focus of the discussion below, while the second term, {⌘

t

(s)}, expresses the residual uncertainty
in the proxy. In what follows, we make the simplifying assumption that {⌘

t

(s) : t 2 T, s 2 D} is an
independent Gaussian process with mean 0 and variance ⌧2, while noting that more a spatially or temporally
correlated error process could be used instead [cf. Li et al., 2010].

We consider a parametric monotone forward model relating the temperatures and the tree ring density ob-
servations. More specifically, for a latent temperature y, we model h(·) as a sigmoid function: h(y) =

�1 + �2/(1 + e��3(y��4)
). The sigmoid function reflects our prior assumptions that there are asymptotes at

the minimum and maximum tree ring density, with the tree ring density increasing monotonically and nearly
linearly with increasing temperature between these asymptotes.

To complete the statistical model, we follow Tingley and Huybers [2010a] in assuming that Y is a Gaussian
spatio-temporal process with a constat mean, and a separable covariance function that is AR(1) in time and
exponential in space. Letting Y

t

denote the vector of temperatures at the sites of interest at time t, we assume
that for each t, Y

t

= µ1+�(Y
t�1�µ1)+✏

t

, where 1 is a vector of ones, µ is the Y process mean, and ✏
t

is
an independent Gaussian error with mean zero and covariance 2R(�), with R(�) a correlation matrix with
range parameter �. For locations s

i

and s
j

, the (i, j) element of the matrix is R
ij

(�) = exp(�||s
i

� s
j

||),
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where ||s
i

�s
j

|| denotes the chordal distance between the two locations, thereby ensuring a valid correlation
function on the sphere.

With � = (�1, . . . ,�4)T denoting the parameters of the forward model, the parameter vector of interest is
✓ = {Y,�2,�, ⌧2,2,�,�}. The posterior distribution of ✓ given z and p is then

⇡(✓|z,p) /
⇥
f(z|Y,�2

)⇡(�2
)

⇤ ⇥
f(p|Y,�, ⌧2)⇡(⌧2)⇡(�)

⇤ ⇥
f(Y |µ,2,�,�)⇡(µ)⇡(2)⇡(�)⇡(�)

⇤
,

where z and p are the vector of instrumental and proxy observations. The density f(z|Y,�2
) is the like-

lihood for the instrumental temperatures, f(p|Y,�, ⌧2) is the likelihood for the proxy measurements, and
⇡(·) denote prior distributions, assumed to be independent, on the parameters. With the exception of the
spatial range parameter, we assume diffuse priors. The three variance parameters (�2, ⌧2 and 2) are given
mutually independent inverse gamma prior distribution with shape 0.01 and rate 0.01, while the �

j

are
given independent normal priors, with mean 0 and variance 100. The mean of the latent climate process,
µ, is given a normal prior with mean zero and variance 100, while the temporal dependence parameter � is
given a uniform prior on (�1, 1). Following the findings of Tingley and Huybers [2010a] and Mannshardt
et al. [2013] we assume a priori that the spatial range parameter is concentrated around 2000, and specify a
gamma prior prior with shape 500 and rate 1/4 for �. There is no closed form expression for the posterior
distribution, so we generalize the Markov chain Monte Carlo (MCMC) algorithm proposed in Tingley and
Huybers [2010a] to allow for sampling with a nonlinear forward model.

4 Results

The results are based on two parallel chains of an MCMC algorithm [implemented in R, R Core Team,
2013], each of length 5,000 after thinning by a factor of 10 and discarding a a burn-in of length 2,000.
Convergence was assessed using trace plots. We also fit a second variant of the model, assuming a linear
forward model, h(y) = �L

1 + �L

2 y, and placing independent normal priors on �L

1 and �L

2 , each with mean
zero and variance 100. All other aspects of the model remain unchanged, and posterior summaries for each
model are based on the same number of posterior draws. Table 1 compares the posterior mean and 95%
credible intervals (CIs) of the parameters under the two differing forward models. There are a number of
notable differences between the two model fits, that extend beyond the parameters of the forward models
themselves. The error variance in both the instrumental records, �2, and the proxy records, ⌧2, is slightly
higher for the nonlinear model. As a consequence, the variance for the latent climate process, 2, is lower for
the nonlinear model. The mean of the latent climate process, µ, has a lower mean for the nonlinear forward
model, while the temporal and spatial correlation parameters (�,�), and hence the correlations, themselves
differ little between the two models.

Figure 3 shows posterior summaries of the forward models. Compared with the linear forward model, the
nonlinear forward model predicts lower tree ring densities at lower temperatures, higher densities around
zero, and lower densities for higher temperatures. To assess model performance, we calculated, using the
posterior mean fits for each forward model, the root mean square error (RMSE) in predicting the tree ring
density at two locations (the crosses in Figure 1) that were removed prior to model fitting. At both locations
the fit was better for the nonlinear versus the linear forward model (RMSE of 0.81 versus 0.84 in the west;
0.76 versus 0.82 in the east).1

Figure 4 compares the reconstructed temperature anomalies at the locations denoted 1 and 2 on Figure
1, where both instrumental and paleoclimate measurements are available. Predictions from the nonlinear
1For a graphical summary see http://www.stat.osu.edu/

˜

pfc/publications/documents/nonlinear_CV.

pdf
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Table 1: Posterior summaries of the parameters in the two Bayesian models with different forward models.

Nonlinear forward model Linear forward model
Parameter Post. mean 95% post CI Parameter Post. mean 95% post CI

�2 0.07 (0.06, 0.07) �2 0.03 (0.02, 0.03)
�1 0.60 (0.49, 0.73) �L

1 -0.24 (-0.26, -0.21)
�2 -4.62 (-5.17, -4.09) �L

2 0.68 (0.66, 0.71)
�3 -1.12 (-1.26, -0.99)
�4 -1.66 (-1.83, -1.50)
⌧2 0.42 (0.41, 0.44) ⌧2 0.39 (0.38, 0.41)
µ -0.38 (-0.45, -0.31) µ -0.25 (-0.35, -0.15)
2 0.49 (0.46, 0.51) 2 0.77 (0.72, 0.83)
� 0.49 (0.47, 0.51) � 0.51 (0.46, 0.54)
� 2099.15 (1981.13, 2215.73) � 2103.37 (1975.62, 2237.98)
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Figure 3: (a) A posterior summary of the two forward models (black: nonlinear; gray: linear). The solid line is the
posterior mean and the dashed lines are pointwise 95% credible intervals; (b) A comparison of the rate of volcanic
cooling for the two forward models (black: nonlinear; gray: linear). The numbers denote ice-core derived estimates
of Northern Hemisphere sulphate aerosol injections, in Tg [Gao et al., 2009].

forward model are smoother in time, while the pointwise credible intervals are less variable. Both series
show the effect of volcanic events, as evidenced by dips in the predictions (e.g., 1584 at Location 1, and
1816-1817 at both locations). Temporally-varying spatial summaries2 indicate that the nonlinear forward
model tends to produce cooler predictions of the latent temperatures in the past. As expected, the climate
processes inferred from the two models are most similar over the last 150 years, when the spatially dense
instrumental records dominate the inference. We next investigate the effect of the forward model upon the
estimated cooling associated with the 10 largest pre-180 volcanic eruptions. We estimate the amount of
volcanic cooling as the difference between the latent temperature for the four years preceding each volcano
(averaged over space) minus the latent temperature average for year of the eruption and the subsequent
year. Figure 3(b) indicates that the amount of volcanic cooling is less extreme under the nonlinear model
(the black lines) versus the linear model (the gray lines). For Huaynaputina in 1600 and Tambora in 1815
the nonlinear model clearly damps the volcanic response. For Kuwae in 1453, the lack of data is likely a
2
http://www.stat.osu.edu/

˜

pfc/publications/documents/nonlinear_forward_maps.pdf

Proceedings 59th ISI World Statistics Congress, 25-30 August 2013, Hong Kong (Session IPS006) p.57

http://www.stat.osu.edu/~pfc/publications/documents/nonlinear_forward_maps.pdf


1400 1500 1600 1700 1800 1900 2000

−4
−2

0
2

4

Year

La
te

nt
 te

m
p.

Nonlinear, Posterior summary, Location 1

1400 1500 1600 1700 1800 1900 2000

−4
−2

0
2

4

Year

La
te

nt
 te

m
p.

Nonlinear, Posterior summary, Location 2

1400 1500 1600 1700 1800 1900 2000

−4
−2

0
2

4

Year

La
te

nt
 te

m
p.

Linear, Posterior summary, Location 1

1400 1500 1600 1700 1800 1900 2000
−4

−2
0

2
4

Year
La

te
nt

 te
m

p.

Linear, Posterior summary, Location 2

Figure 4: At two different locations containing both instrumental and tree ring density records, posterior summaries
of the latent climate anomalies for the nonlinear (top panels) and linear (bottom panels) forward models. The solid
line is the posterior mean and the gray region denotes pointwise 95% credible intervals.

reason for a lack of any cooling response. Over the limited spatial domain considered here, we do not find
a strong correlation between the size of the eruption, according to the estimated sulphate aerosol injection
[the number in Figure 3(b) Gao et al., 2009], and the amount of volcanic cooling.

5 Discussion

We have investigated the effects of nonlinear statistical forward models on paleoclimate reconstructions.
Exchanging a linear forward model for a simple monotone function, within a hierarchical framework that
assumes separability in the latent spatio-temporal process, results in reconstructions that differ both quali-
tatively and quantitatively. In future work we will further investigate the choice of statistical model and its
impact upon the climate reconstruction. A natural generalization is to estimate the forward model nonpara-
metrically using monotonic curve fitting techniques. Although traditional nonparametric function estima-
tion is able to obtain the correct functional form asymptotically, finite sample bias is non-negligible in our
application. To incorporate monotonicity constraints within the hierarchical framework, we can consider
spline-based Bayesian isotonic regression, which can take a number of different forms [e.g., Neelon and
Dunson, 2004, Cai and Dunson, 2007, Brezger and Steiner, 2008, Shively et al., 2009, Meyer et al., 2011].
Given a choice of basis functions, monotonicity and smoothness constraints can be easily implemented
through appropriate prior distributions, and model fitting can be done using MCMC algorithms. A second
generalization would let the forward model parameters vary spatially, allowing for an exploration of how the
empirical tree ring – temperature response differs between regions where different climatic factors (namely,
water, light, and temperature) are estimated to be most limiting to growth [Nemani et al., 2003].

References for this article can be found at http://www.stat.osu.edu/
˜

pfc/publications/

documents/references.pdf
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