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Abstract

We outline a model and algorithm to perform inference on the palaeoclimate and palaeoclimate
volatility from pollen proxy data. We use a novel multivariate non-linear non-Gaussian state space
model consisting of an observation equation linking climate to proxy data and an evolution equation
driving climate change over time. The observation equation linking climate to proxy data is defined
by a pre-calibrated forward model, created via a multivariate latent Gaussian process fitted via
integrated nested Laplace approximation (INLA). The data for this forward model are taken from a
calibration set of modern climate-pollen relationships. The evolution equation representing climate
change is driven by a Normal-Inverse Gaussian Lévy process, being able to capture large jumps
in multivariate climate whilst remaining temporally consistent. The pre-calibrated nature of the
forward model allows us to cut feedback between the observation and evolution equations and thus
integrate out the state nuisance parameters whilst making minimal simplifying assumptions. A
key part of this approach is the creation of mixtures of marginal data posteriors representing the
information obtained about climate from each individual time point. Our approach allows for an
extremely efficient MCMC algorithm, which we demonstrate with a pollen core from Lake Monticchio
in south-central Italy.
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1 Introduction

Palaeoclimate reconstruction is a major focus of the Intergovernmental Panel on Climate Change (Jansen
et al., 2007). Public interest, however, has largely been fuelled by the ‘Hockey Stick’ and ‘climategate’
controversies, e.g. [Mann et al.[(1998,(1999);|McShane and Wyner| (2011)) focussing on hemispheric climate
changes over the past millennium. Such changes are relatively small and can be inferred with reasonable
precision from proxies (e.g. tree rings) that are resolved annually. In contrast, the older Younger Dryas
period (12.8ka to 11.5ka BP) shows a rapid switching from warm to cold to warm. During this period
ice core data from Greenland show abrupt warmings of up to 16°C within decades (Jansen et al., 2007,
P435). This size and rate of change is not captured well by the General Circulation Models (GCMs)
which are used to predict future climate, nor by the precise proxies used to examine the past millennium.
Pollen proxy data offer the best hope of resolving such sizeable past climate changes in locations other
than Greenland.

The model we propose differs from many recent studies performing inference on palaeoclimate because:
(a) it is non-linear and non-Gaussian in the relationship between climate and proxy,
(b) we infer only climatic variables to which the proxy is sensitive,

(c) we use real data to produce climate reconstructions rather than simulated ‘psuedo-proxies’, and
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(d) we allow for stochastic volatility in climate.

This approach, tackling many more sources of uncertainty than previously, is inspired by the SUPRANET
grouﬂ of which many ideas are shared with |Tingley et al.[(2012) and [Huntley| (2012). The development
of our modelling approach is only possible because a number of these aspects of palaeoclimate recon-
struction have been fully developed by statisticians working in conjunction with palaeoclimate experts.
We expand more on the importance of these various aspects in subsequent sections.

Our state-space model can be written as:

yilei ~ fo(ci, D), i=1....n (1)
Ci:Ci—1+’yi7i:27"'7n (2)

where y; = y(¢;) represents pollen data at time t;, ¢; = ¢(¢;) is palaeoclimate, D is a modern data set of
pollen and climate (D = (¢™,y™)), f is a forward model parameterised by 6, and ~v; ~ N(0,v(t;—1,t;))
are innovations. Following convention, we call Equation [I] the observation equation, and Equation [2] the
evolution equation. All of the parameters involved are multivariate: y; being here of dimension 28 and
¢; being of dimension 3. Our focus is on the marginal posterior distribution m(c,v|y). One particular
interest is in the distribution of the incremental variance terms v; = v(t;—1,t;), representing the square of
the volatility. We set these to be Inverse Gaussian (Barndorfl-Nielsen, (1997)), written IG(n, ¢), yielding
a Normal-Inverse Gaussian (NIG) process on c.

The outline of this paper is as follows. In Section [2] we examine previous work in palaeoclimate recon-
struction. In Section |3| we outline our modelling approach and a novel modular MCMC algorithm. We
outline a case study focussing on climate change over the past 120k years in southern Italy in Section [
We conclude in Section

2 Previous work in statistical palaeoclimatology

There are three main model-based approaches which perform inference on palaeoclimate, all of which fit
into our state-space model:

e Haslett et al.[(2006]) use 14 pollen taxa to reconstruct climate in two dimensions. In their approach,
the forward model f is obtained from the climatological location of modern data in a multivariate
spatial model where the proxy is the response. The evolution equation is represented by a tg
random walk.

e Tingley and Huybers| (2010) perform inference on mean annual temperature from psuedo-proxies
(simulated data required to behave like proxy data). They use a linear observation equation,
trained on the temporal overlap where both proxy and climate data are available. The evolution
equation is represented by a fully spatial model with Exponential covariance and an MA(2) temporal
component.

e Li et al| (2010) reconstruct mean annual temperature from multiple psuedo-proxies representing
pollen, tree rings and borehole measurements. This model is similarly trained on temporally over-
lapping data, with a similarly linear observation equation. Here, however, the evolution equation
is represented by an AR(2) model, and also allows for the inclusion of further covariates.

When the likelihood and prior distributions are Gaussian, as in (Tingley and Huybers| (2010) and |Li
et al| (2010) above, then Equations [l and [2| are conceptually easy to solve via traditional MCMC or
particle-type methods. Complications arise from the high-dimensionality of the climate parameters and
the sheer quantity of data. |Haslett et al| (2006), however, have a non-linear model and thus combine
the MCMC methods with some approximations which partition the model into ‘modules’ (Liu et al.|
2009). In particular, parameters 6 of the likelihood are learnt solely from the modern data. Thus the
fossil pollen information from any particular core contributes no further information. The modularisation

IStudying uncertainty in palaeoclimate reconstructions: http://caitlin-buck.staff.shef.ac.uk/SUPRAnet/
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assumption is an unremarkable and implicit assumption in most studies involving instrumental data; e.g.
experimental data on temperature are not normally used to re-calibrate the thermometer that generated
them. In this paper we use a likelihood which is considerably more complex than that of [Haslett et al.
(2006), and thus similarly benefits from modularity assumptions.

A final common issue in the modelling of palaeoclimate data is the choice of climate variables to recon-
struct. This choice, as outlined by [Huntley| (2012)) should depend on the sensitivity of the proxy data to
changes in climate. In contrast, many previous studies have chosen climate variables (e.g. mean annual
temperature) which are not strongly affected by proxy changes. [Huntley| (2012) suggests:

e the Mean Temperature of the Coldest Month (MTCO) in Celsius, a measure of the harshness of
the winter,

e the Growing Degree Days above 5°C (GDD5, also known as the annual temperature sum above
5°C), a measure of the warmth of the growing season,

e the ratio of Actual to Potential Evapotranspiration (AET/PET), a measure of the available mois-
ture.

We include all three of these climate variables in our final model.

3 Statistical model

The three papers outlined at the start of Section [2] form the basis of our approach. We most closely
follow that of [Haslett et al.| (2006) as this involves using real data and provides a fully non-linear model.
We expand the number of pollen taxa from 14 to 28 and use the same spatial model to calibrate the
observation equation. f is now a nested zero-inflated Binomial distribution, with 6 including parameters
which allow for zero inflation and measurement error. The modern data D = (y™, ¢™) represent 7742
modern samples of 28-dimensional pollen and 3-dimensional climate. Model fitting can be made much
faster by treating the spatial model as a GMRF and so utilising the INLA framework of Rue et al.| (2009)).
The forward modelling stage of our approach is more fully documented in [Salter-Townshend and Haslett
(2012)).

We similarly extend the [Haslett et al.| (2006) approach to the evolution equation. We treat ~; as Inverse
Gaussian (IG) so that the climate process is marginally a Normal-Inverse Gaussian (NIG) distribution
with volatilities /v;. Bayesian inference for the NIG distribution has been discussed by Karlis and
Lillestol (2004), providing closed-form complete conditionals and thus a neat Gibbs algorithm. Some of
these complete conditionals transfer over to our model but others, when combined with the observation
equation, are no longer required. The NIG process as we used it provide long-tailed climate behaviour,
designed to match that experienced in the data.

The posterior distribution for our model can be written out as:

n n—1 n

W(vaanvd)vg‘yatvp) X HT(C’L'|C7271»'U7J) Hﬂ-(vi|t7777¢) HW(ZMCm@)
=2 =1 i=1

n™

< [T 1e™.60) 7(8) w(n, ¢) (3)

i=1

Such a model can be fitted using Markov chain Monte Carlo (MCMC) or particle methods (e.g. |Car-
valho et all 2010; Andrieu et al., |2010). However, these tend to be extremely slow due to the high-
dimensionality of the parameters ¢ and v, as well as the large likelihood calculation of 7 (y"|c™,6). We
thus propose a modular structure to model fitting, following that proposed by [Liu et al. (2009). Here,
the proxy data y are not presumed to contribute any extra information to the posterior of §. We can

thus split the modelling into two modules; the first where we learn 6 from the modern data (¢™,y™),
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and the second where we learn ¢, v from the proxy data y.

In fact there are further benefits to be had following this approach. If parameters 6 are learnt from a
separate module, then it is trivial to create marginal data posteriors (MDPs) of the form 7 (¢;|y;) where
we can marginalise over #. By treating the MDP as a mixture of normal distributions, we end up with
a posterior distribution which factorises in ¢, and so allows us to remove climate and focus inference
directly on v. We report elsewhere on the detailed aspects of this fitting stage.

4 Case study: Lake Monticchio

Our case study covers a unique pollen core obtained from Lago Grande di Monticchio, discussed in
Allen and Huntley| (2009). The core contains 924 samples of pollen covering 132 thousand years before
present. The creation of marginal data posteriors is undertaken on a layer by layer basis, and can be run
in parallel. This step takes around 30 minutes on a Core-i7 processor with 16Gb Ram. The following
MCMC run is much faster, taking just 2 minutes to perform 200,000 iterations, followed by the creation
of interpolated climate histories and volatilities. We show marginal summaries of the climate histories
for the three climate dimensions in Figure [I} We include the original MDPs and some output from the
simpler method of |Huntley| (1993|) for comparison.

The climate posterior distributions clearly show strong climate changes throughout the core’s period
with the strongest changes being seen in available moisture (AET/PET). Both the temperature based
measurements (GDD5 and MTCO) seem relatively stable with only isolated periods of rapid change. The
largest of these rapid changes occurs around 15k years BP; corresponding approximately with (though
slightly earlier than) that of the Younger Dryas.

5 Discussion

Our approach allows for inference on palaeoclimate pollen cores with a more complete quantification of
uncertainty than previously possible. In particular, the use of the NIG process as a prior distribution
on climate change seems appropriate given the dynamic nature of the system. The fitting algorithm we
have developed allows for fast inference on a high-dimensional complex model. The output from the
model seems reasonable and broadly matches that given by other methods, though with a far greater
focus on uncertainty. The algorithm is implemented in the R package Bclim and so is available for use
by non-experts.

Future expansions of this model may allow for multiple cores in a spatial region to be run simulta-
neously. A spatial multivariate Normal-Inverse Gaussian process could be used, with an appropriate
non-stationary spatial covariance structure. However, these will most likely have to be run on shorter
timescales, as there are few (if any) which can match Monticchio for temporal coverage. Another exten-
sion would be to allow for multiple proxies to contribute simultaneously via independent forward models.
However, these would need to be carefully matched for their temporal response to climate change can
strongly vary. Such detailed forward models have yet to be built.
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Figure 1: A plot of the centennial interpolated GDD5 (growing season warmth), MTCO (harshness of
winter) and AET/PET (available moisture; scaled up to (0,1000)) over the period 0 to 125ka BP at Lake
Monticchio. The blue ‘blobs’ represent the marginal data posteriors whereas the red bands represent
summarised posterior stochastic interpolations of climates ¢. The green lines represent the output from

the method of (1993)).
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