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Abstract

In a traditional discrete choice experiment, respondents indicate which one of a
set of products(services or profiles) they think is best, and they usually do this
for a number of sets. Howeverthis does not allow the experimenter to gain any
information about the relative contributionto the utility of each of the levels in
a profile. To rectify this deficiency, researchers can showrespondents a profile,
described by the levels of a number of attributes, and ask each respondentto
choose the best and the worst feature (attribute-level) of the profile. Such a task is
called anattribute-level best-worst choice task. Using the D-optimality criterion,
resolution 3fractional factorial designs perform as well as the complete factorial
design in attribute-level best-worst choice experiments, assuming both that all
attribute levels are equally attractive and that only main effects of attribute levels
are to be used to explain the results. We consider the performance of some small
designs for various different prior assumptions about attribute levels.

Key Words: Multinomial logit model, stated preference experiments, profile case
best-worst scaling

1 Introduction

Best-worst scaling is a preference elicitation method in which respondents are
asked to indicate which of the items currently being shown to them they think
is best and which worst. Recently there have been a number of studies in which
the items to be compared are levels of a set of attributes that describe a policy or
product, that is, a profile in a traditional discrete choice experiment (DCE). These
attribute-levels best-worst scaling tasks are thus an alternative way to DCEs to
elicit preferences. Potoglou et al. (2011), for example, give an empirical com-
parison of the two methods and conclude, “preference weights from best-worst
scaling and discrete choice experiments do reveal similar patterns in preference
and in the majority of cases preference weights - when normalised/rescaled - are
not significantly different.” The appeal of attribute-level best-worst (BW) (some-
times called profile-based BW or Case 2 BW) is that the task is cognitively less
demanding for respondents, particularly if the area of application is unfamiliar.

In this paper we focus on design considerations. If a profile presented to a re-
spondent has one attribute at its most attractive level and the other attributes
at lower levels then it is likely that determination of the best is easy and hence
choices are made with more consistency than is likely to be observed in a choice
set in which the attributes are at intermediate levels. Thus it is of interest to
determine a set of profiles (which here are choice sets) in which all choices are
of consistent difficulty but which has an information matrix that is the same as
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that of the complete factorial, which is D-optimal under the assumption of no
diffrences between levels.

In the next section we give the form of the MNL model used, and the form of
the information matrix in terms of both the parameters of the fractional factorial
design and the unknown parameters for the attribute levels. In the absence
of any prior estimates of the attribute-level parameters, these are assumed to
be constant when designing a study (Potoglou et al. (2011)) and in that case
resolution 3 fractional factorial designs and the complete factorial have the same
information matrix. By using a smaller set of profiles it is more likely that a set
of profiles of consistent choice difficulty can be found. We then investigate the
performance of several designs for three binary attributes, and for four ternary
attributes, for a number of different parameters for the attribute levels. We close
with some suggestions for future research.

2 The Model

Suppose that k attributes, Fq, 1 ≤ q ≤ k, are used to describe each profile and
that Fq has `q levels. Then given any profile (x1, x2, . . . , xk) = x the implicit
choice set of pairs from which a respondent is making a choice, Cx, is given by

{(x1, x2), (x1, x3), . . . , (x1, xk), (x2, x3), . . . , (xk−1, xk), (x2, x1), . . . , (xk, xk−1)}.

We let P be the set of profiles that form the choice sets for the attribute-level
BW choice task.

Marley et al. (2008) introduced the attribute-level maxdiff model. They defined
BWx(xi, xj) to be the probability that jointly (level xi of factor Fi is chosen as
best, level xj of factor Fj is chosen as worst) from profile x. Then BWx is called
the best-worst choice probability for profile x. We define BWx ∀ x ∈ P .

BWx satisfies the attribute-level maxdiff model if and only if there exists a positive
scale b on the attributes such that for every x ∈ P and for any two distinct factors,

BWx(xi, xj) =
b(xi)/b(xj)∑k

q=1

∑k
r=1,r 6=q(b(xq)/b(xr))

.

To incorporate the attribute level information let b(xi) = exp[βFi + βFi,xi ]. Then
the set of best-worst choice probabilities, BWx, satisfies 2-invertibility, 3-reversibility
and 4-reversibility. Hence we can use Theorem 15 of Marley et al. (2008) to show
that the set of choice probabilities satisfies an attribute-level max-diff model with
b a ratio scale. Thus we can estimate the impact b(xi) of the attribute level xi
and we can calculate the average of the impacts of the levels of factor Fi to de-
termine the average impact of factor Fi. This representation of b(xi) is similar to
that in equation (1) of Flynn et al. (2007), with the exception that they include
a constant which is inconsistent with the formulation required by Marley et al.
(2008).

As in Street and Knox (2012) we define

π(Fixi, Fjxj) =
b(xi)

b(xj)
= exp[βFi + βFi,xi − (βFj + βFj ,xj )].

The goal of an attribute-level BW choice experiment is to estimate the π(Fixi, Fjxj)
and hence the βFq , 1 ≤ q ≤ k and the βFq ,xq , 1 ≤ q ≤ k, 0 ≤ xq ≤ `q − 1. We will
let π be a vector containing the distinct π(Fixi, Fjxj).
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Let a =
∑

q `q be the total number of levels over all of the attributes. Then the
total number of pairs of levels, and hence the total number of entries in π, is
p =

∑k
q=1 `q(a− `q). For the first p/2 pairs of levels, we will order the entries of

π by first ordering the factor pairs in lexicographic order, F1F2, F1F3 to Fk−1Fk,
for some fixed but arbitrary order of the factors. Within each pair of factors we
will order the levels lexicographically. This gives the pairs for π1 to πp/2. For
πi+p/2 reverse the order of the levels in πi. Thus if there are 3 attributes each with
two levels, and writing 02 for the first level of the second attribute, for example,
the first few pairs are (01, 02), (01, 12), (11, 02), (11, 12), (01, 03), (01, 13) and so on.

Suppose that in the attribute-level BW choice experiment each respondent eval-
uates the N profiles in P . Suppose that nx is the number of times that profile x
is evaluated by each respondent. (Thus usually nx is 0 or 1.) Let λx = nx/N .

Let Λ be a p × p matrix with rows and columns labelled by pairs of attribute
levels, ordered in the same way as the entries in π. Let t1 = (Fixi, Fjxj), t2 =
(Fqxq, Fsxs), t1 6= t2, say. Then define

Λt1,t2 = −πt1πt2
∑

{x∈P |t1,t2∈Cx}

λx
(
∑

t∈Cx
πt)2

and
Λt1,t1 =

∑
{t2|t2 6=t1}

Λt1,t2 .

so the row and column sums of Λ are 0.

As defined, Λ is the information matrix for γ=ln(π) for the MNL model with
selection probabilities given by BWx for the set of profiles P with correspond-
ing choice sets Cx (Bradley (1955); Pendergrass and Bradley (1960); Street and
Burgess (2007), Section 3.3). But we have assumed that

γ(Fix, Fjy) = βFi + βFix − (βFj + βFjy)

in establishing the appropriateness of the attribute-level maxdiff model and so
we need to transform Λ to the information matrix for the βFi and the βFix.

To do this let

β′ = (βF1 , βF2 , . . . , βFk
, βF10, . . . , βF1`1−1, βF20, . . . , βF2`2−1, . . . , βFk0, . . . , βFk`k−1),

and define X to be the matrix such that γ=Xβ. Then the information matrix
for β is given by X ′ΛX. But the rows of X are not linearly independent. We let
Cβr

denote the full-rank information matrix of a reduced β with entries

β′r = (βF1 , . . . , βFk−1
, βF10−βF1`1−1, . . . , βF1`1−2−βF1`1−1, . . . , βFk`k−2−βFk`k−1).

We let rFix be the number of times that level x of attribute Fi appears in the
treatment combinations in P . The next result gives the entries in Cβr

under

the assumption that all the entries in β are equal. We regard Cβr
as a block

matrix. The first k − 1 rows and columns of Cβr
are labelled by the first k − 1

attributes. The remaining rows and columns are grouped into sets of `q − 1 rows
and columns and labelled by the corresponding attribute. So rows, and columns,
k to k + `1 − 1 are labelled F1, rows, and columns, k + `1 to k + `1 + `2 − 1 are
labelled by F2 and so on.
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THEOREM 2.1

Street and Knox (2012) If all the entries in β are equal then the entries in
Cβr

are given by

Cβ,i,j =

{ 2
k , i = j,
−2

k(k−1) , i 6= j,

Cβ,q,Fh
=

{ −2
Nk(k−1)

[
rFh0 − rFh`h−1, . . . , rFh`h−2 − rFh`h−1

]
, h 6= q,

2
Nk

[
rFq0 − rFq`q−1, . . . , rFq`q−2 − rFq`q−1

]
, h = q.

Cβ,Fg ,Fh
=



( 2
Nk(k−1)(−rFgaFhb + rFgaFh`h−1 + rFg`g−1Fhb − rFg`g−1Fh`h−1))a,b, g 6= h

2
Nk


rFg0 + rFg`h−1 rFg`h−1 . . . rFg`h−1

rFg`h−1 rFg1 + rFg`h−1 . . . rFg`h−1
...

...
...

...
rFg`h−1 rFg`h−1 . . . rFg`h−2 + rFg`h−1

 , g = h

This matrix is the same for a resolution 3 fraction as for the complete factorial.

3 Design Performance and Assumed Priors

In this section we consider the performance of various designs for a number of
assumed prior values. For ease we will specify the values of ln(b(xq)) which we
will denote by xq.

3.1 Three binary attributes
In this case there are 8 profiles, 000, 001, 010, 011, 100, 101, 110, 111 and each
profile can be included or not in the BW task. Thus there are 28 − 1 = 255
different designs to compare using the determinant of the information matrix.
A graph of the results for (01, 02, 03, 11, 12, 13)=(1,1,1,1,1,1) is given below and
confirms the results of Theorem 2.1, that is, the best designs are the the two
resolution 3 designs and the complete factorial.
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If all the 0qs are equal and all the 1qs are equal then the best BW design is the
one with the two profiles (01, 02, 03) and (11, 12, 13). This design is 87% efficient
in the case of equal parameter values. If the levels within each attribute are
equal, but the values for the attributes are different, then for small differences
the resolution 3 fractions and the complete factorial are still the best designs to
use but as the difference between the attributes increase the complete factorial is
the unique best design.
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3.2 Four ternary attributes
In this case we consider the performance of the unique 64 designs that come
from the three non-isomorphic 18 run 7 attribute orthogonal arrays by omitting
columns. These designs can be divided into 34 geometric equivalence classes
and 10 combinatorial equivalance classes but we include all of the designs in our
discussion as neither of these subdivisions of the designs appears to coincide with
their performance for different assumed prior values of ln(b(xq)).

If all of the levels are assumed to be equally attractive, or even if just all the
levels within each attribute are equally attractive, then the 64 designs perform
equally well. But this is not necessarily the case for other values of ln(b(xq))
as illustrated below. Here the levels all have ln(b(x0)) = 2, ln(b(x1)) = 1 and
ln(b(x2)) = 0.5.
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Further work on the performance of orthogonal arrays in the context of attribute-
level BW designs is clearly needed.

4 Concluding Remarks

Although Theorem 2.1 shows that if all the βFq ,x are equal the equal replication
of levels within all attributes or all but one attribute gives sub-matrices with 0
entries, other designs can perform well. For example, Knox et al. (2012) describe
a study which uses an orthogonal main effects plan with three 3-level attributes,
two 4-level attributes and one 8-level attribute in 32 runs. This OMEP has pairs
of attributes in which neither attribute has all attribute levels appearing equally
often and yet the simulation study that they undertake show that all assumed
(non-zero) parameter values are recovered correctly. Thus OMEPs would appear
to be an appropriate choice for attribute-level best-worst choice experiments even
if unequal level replication occurs for more than one attribute. Future work might
investigate the limitations, if any, of OMEPs in the context of attribute-level BW
choice experiments.
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