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Abstract

Influential units occur frequently in surveys, especially in the context of business
surveys that collect economic variables whose distributions are highly skewed. A unit
is said to be influential when its inclusion or exclusion fromthe sample has an impor-
tant impact on the magnitude of survey statistics. We extendthe results of Beaumont
et al. (2013) to the case of two-phase sampling designs. We define the concept of
conditional bias attached to a unit with respect to both phases and propose a robust
version of the double expansion estimator, which depends ona tuning constant. Fol-
lowing Beaumont et al. (2013), we determine the tuning constant which minimizes
the maximum estimated conditional bias. Our results can be naturally extended to the
case of unit nonresponse, the set of respondents often beingviewed as a second phase
sample.

Key words:Conditional bias; influential value; two-pase sampling design; robust estimation; unit
nonresponse.

1 Introduction

Two-phase sampling is often used in surveys when the sampling frame contains little or no
auxiliary information. In this case, it may be wise to first select a large sample in order to
collect data on variables that are inexpensive to obtain andthat are related to the charac-
teristics of interest. Using the variables observed in the first phase, an efficient sampling
procedure can then be used to select a (typically small) subsample from the first-phase
sample in order to collect the characteristics of interest.The theory behind inference for
two-phase sampling design may also be helpful in the contextof unit nonresponse since the
set of respondents is often viewed as a second phase sample.

Influential units occur frequently in surveys, especially in the context of business sur-
veys that collect economic variables whose distributions are highly skewed. The presence
of influential units in the sample does not introduce a bias but lead generally to very un-
stable estimators. Methods for dealing with influential units include winsorization and M-
estimation; see e.g., Beaumont and Rivest (2009) and Beaumont et al. (2013).

In this paper, we extend the results of Beaumont et al (2013) for uni-phase sampling
designs, who suggested constructing robust estimators of population totals based on the
concept of conditional bias of a unit; see also Moreno-Rebollo et al. (1999, 2002). The
conditional bias of a unit can be viewed as an appropriate measure of influence in finite
population sampling.

2 Set-up

Consider a populationU of sizeN. We are interested in estimating the population total
Y = ∑

i∈U
yi of a characteristic of interesty. We select a sample according to a two-phase
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sampling design: in the first phase, a sampleS1, of sizen1, is selected fromU according
to a given sampling designp(S1). In the second phase, a sample,S2, of sizen2, is selected
from S1 according top(S2|S1). We develop our results for invariant two-phase sampling
design, which are those designs that satisfyp(S2|S1) = p(S2). Our results can be extended
to cover non-invariant two-phase designs.

We adopt the following notation: letI1i be a sample selection indicator attached to uniti
such thatI1i = 1 if unit i is selected inS1 andI1i = 0, otherwise, and letI1 = (I1, · · · , IN)

′. Let
I2i be a sample selection indicator attached to uniti such thatI2i = 1 if unit i is selected in
S2 andI2i = 0, otherwise. Letπ1i =P(I1i = 1) andπ1i j =P(I1i = 1, I1 j = 1) denote the first-
order and second-order probabilities inS1. Similarly, letπ2i = P(I2i = 1|I1i = 1) andπ2i j =
P(I2i = 1, I2 j = 1

∣

∣I1i = 1, I1 j = 1) denote the first-order and second-order probabilities in
S2.

A basic estimator ofY is the double expansion estimator

ŶDE = ∑
i∈S2

π−1
1i π−1

2i yi . (1)

To study the properties of (1) , we express its total error as :

ŶDE −Y = (ŶE −Y)+ (ŶDE −ŶE), (2)

whereŶE = ∑
i∈S1

π−1
1i yi denotes the expansion estimator that one would have used hadthe

design been a single phase design. The termsŶE −Y andŶDE − ŶE on the right hand side
of (2) denote the errors due to the first phase and second phase, respectively. LetE1(.)
andV1(.) denote the expectation and variance with respect to the firstphase andE2(. |I1 )
andV2(. |I1 ) denote the conditional expectation and conditional variance with respect to
the second phase. Noting thatE2(ŶDE |I1 ) = ŶE andE1(ŶE) = Y, it follows from (2) that
Ep(ŶDE) ≡ E1E2(ŶDE |I1) =Y; that is,ŶDE is design-unbiased forY. The total variance of
ŶDE is

Vp(ŶDE) =V1E2(ŶDE |I1 )+E1V2(ŶDE |I1 ) = ∑
i∈U

∑
j∈U

(

π∗
i j

π∗
i π∗

j
−1

)

yiy j , (3)

whereπ∗
i = π1iπ2i andπ∗

i j = π1i j π2i j .
In the presence of influential units, the estimator (1) remains design-unbiased. However,

its design variance may be very large. In other words, including or excluding an influential
unit from the calculations may have an important impact on the magnitude of the total error,
ŶDE −Y. An influential unit may have a large impact on the first phase error, ŶE −Y, and/or
on the second-phase error,ŶDE −ŶE.

3 Measuring the influence: the conditional bias

For uni-phase sampling designs, Moreno-Rebollo et al. (1999, 2002) introduced the concept
of conditional bias attached to a unit as a measure of influence; see also Beaumont et al.
(2013). We extend this concept to the case of two-phase sampling designs. We distinguish
between three types of units: (i) the sample units, i.e., theunits for whichI1i = 1 andI2i = 1;
(ii) the units selected in the first-phase sample but not in the second phase, i.e., the units for
which I1i = 1 andI2i = 0 and (iii) the non-selected units, i.e., the units for whichI1i = 0 and
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I2i = 0. It is worth noting that each type of unit may have an influence on the total error.
However, only the influence of the sample units can be reducedat the estimation stage. In
other words, nothing can be done for (ii) and (iii) at this stage.

The conditional bias of sampled uniti is defined as :

BDE
i (I1i = 1, I2i = 1) = E1E2(ŶDE −Y|I1, I1i = 1, I2i = 1)

= E1(ŶE −Y|I1i = 1)+E1E2(ŶDE −ŶE|I1, I1i = 1, I2i = 1).

For an arbitrary two-phase design, we obtain

BDE
i (I1i = 1, I2i = 1) = ∑

j∈U

(

π1i j

π1iπ1 j
−1

)

y j + ∑
j∈U

π1i j

π1iπ1 j

(

π2i j

π2iπ2 j
−1

)

y j

= ∑
j∈U

(

π∗
i j

π∗
i π∗

j
−1

)

y j . (4)

Example 1 For simple random sampling without replacement in both phases, (4) reduces

to BDE
i (I1i = 1, I2i = 1) = N

(N−1)

(

N
n2
−1
)

(yi −Ȳ), whereȲ =Y/N. The previous expression

suggest that a unit has a large influence if its y-value is far from the population mean̄Y .

Example 2 For Poisson sampling in both phases, (4) reduces to BDE
i (I1i = 1, I2i = 1) =

(

π∗−1
i −1

)

yi . Hence, a unit has a large influence if its "total weight"π∗−1
i is large and/or

if its y-value is large.

Example 3 For an arbitrary design in the first phase and Poisson sampling in the second
phase, (4) reduces to

BDE
i (I1i = 1, I2i = 1) = ∑

j∈U

(

π1i j

π1iπ1 j
−1

)

y j +π−1
1i

(

π−1
2i −1

)

yi . (5)

Expression (5) will be particularly useful in the context ofunit nonresponse.

In general, the conditional bias (4) is unknown as it dependson population quantities. An
estimator ofBDE

i (I1i = 1, I2i = 1) is given by

B̂DE
i (I1i = 1, I2i = 1) = ∑

j∈S2

π1i

π1i j

π2i

π2i j

(

π∗
i j

π∗
i π∗

j
−1

)

y j . (6)

The estimator̂BDE
i (I1i = 1, I2i = 1) is conditionally unbiased forBDE

i (I1i = 1, I2i = 1) in the
sense thatE1E2

{

B̂DE
i (I1i = 1, I2i = 1)|I1, I1i = 1, I2i = 1

}

= BDE
i (I1i = 1, I2i = 1).

4 Robustifying the double expansion estimator

Following Beaumont et al. (2013), we consider the robust version ofŶDE

ŶR
DE = ŶDE − ∑

i∈S2

{

B̂DE
i (I1i = 1, I2i = 1)

}

+ ∑
i∈S2

ψ
{

B̂DE
i (I1i = 1, I2i = 1);c

}

, (7)

whereψ(.) is a function, which role consists of curbing the impact of influential units
andc is a tuning constant whose value must be determined. We use the so-called Huber
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function given byψ(z;c) = sign(z)×min(|z|,c), wherec is a positive tuning constant and
sign(z) = 1, for z≥ 0, while sign(z) =−1, otherwise.

Whenπ2i = 1 for all i ∈ S2 (i.e., the case of a single phase sampling design), the robust
estimator (7) reduces to that proposed by Beaumont et al. (2013). A suitable value for
c is sometimes determined by minimizing an estimator of the mean square error of the
robust estimator (e.g., Kokic and Bell, 1994; and Rivest andHurtubise, 1995). Following
Beaumont et al. (2013), we consider an alternative method which consists of finding the
value ofc that minimizes max{B̂RDE

i (I1i = 1, I2i = 1) : i ∈ S2}, whereB̂RDE
i (I1i = 1, I2i = 1)

is an estimator of the conditional bias of the robust double expansion estimator attached to
unit i. Using (4), we obtain

BRDE
i (I1i = 1, I2i = 1) = E1E2(Ŷ

R
DE −Y|I1, I1i = 1, I2i = 1)

= BDE
i (I1i = 1, I2i = 1)+E1E2{∆(c)|I1, I1i = 1, I2i = 1} ,

where
∆(c) = ∑

i∈S2

[

ψ
{

B̂DE
i (I1i = 1, I2i = 1);c

}

− B̂DE
i (I1i = 1, I2i = 1)

]

.

As for BDE
i (I1i = 1, I2i = 1), the conditional biasBRDE

i (I1i = 1, I2i = 1) is generally unknown.
We estimate it by

B̂RDE
i (I1i = 1, I2i = 1) = B̂DE

i (I1i = 1, I2i = 1)+∆(c),

which is conditionally unbiased forBRDE
i (I1i = 1, I2i = 1); i.e.,

E1E2
{

B̂RDE
i (I1i = 1, I2i = 1)|I1, I1i = 1, I2i = 1

}

= BRDE
i (I1i = 1, I2i = 1).

Let B̂DE
min=min

{

B̂DE
i (I1i = 1, I2i = 1) : i ∈ S2

}

andB̂DE
max=max

{

B̂DE
i (I1i = 1, I2i = 1) : i ∈ S2

}

.
The value of∆(c) that minimizes max{B̂RDE

i (I1i = 1, I2i = 1) : i ∈S2}, denoted by∆(cminmax),
is given by

∆(cminmax) =−
1
2
(B̂DE

min+ B̂DE
max).

Noting thatŶR
DE(c) = ŶDE +∆(c), the resulting robust estimator is given by

ŶR
DE(cminmax) = ŶDE −

1
2
(B̂DE

min+ B̂DE
max).

This estimator can be obtained without actually computing the valuecminmax so that no
iterative process is required.

5 Application to unit nonresponse

In this section, we consider the problem of robust estimation in the context of unit nonre-
sponse. In this context,S1 denotes the sample selected from the population, whereasS2

denotes the random set of respondents. The quantitiesI1i and I2i denote respectively the
sample selection indicator and the response indicator attached to uniti. Also, π1i andπ2i

denote respectively the inclusion probability in the sample and the response probability for
unit i. We assume that the units respond independently of one another; that isπ2i j = π2iπ2 j

for i 6= j. This is similar to Poisson sampling described in Example 3, except that theπ2i ’s
are now unknown. If theπ2i ’s were known, a propensity score adjusted (PSA) estimator
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would be given by (1) and the conditional bias of a respondingunit would be given (5). In
practice, the response probabilitiesπ2i are unknown and must be estimated. We assume that
they can be parametrically modeled by

π2i = m(xi , α), (8)

wherem(.) is a known function,x is a vector of auxiliary variables available for all the
sampled units (respondents and nonrespondents) andα is a vector of unknown parameters.
A special case of (8) is the logistic regression model. Basedon (8), an estimator ofπ2i is
given by π̂2i = m(xi , α̂), whereα̂ denotes a suitable estimator ofα (e.g., the maximum
likelihood estimator). A PSA estimator ofY is thus given by

ŶPSA= ∑
i∈S2

1
π1i π̂2i

yi . (9)

The total error of̂YPSAcan be expressed as

ŶPSA−Y = (ŶE −Y)+ (ŶPSA−ŶE). (10)

The termŝYE−Y andŶPSA−ŶE in (10) denote the sampling error and the nonresponse error,
respectively. Using a first-order Taylor expansion (Kim andKim, 2007), we have

ŶPSA−ŶL = Op

(

N
n

)

, (11)

where

ŶL = ∑
i∈S1

π−1
1i

{

kiπ1iπ2ih′
i γ̂ +

I2i

π2i

(

yi −kiπ1iπ2ih′
i γ̂
)

}

with hi = ∂ {logit(π2i)}/∂α , γ̂ =

{

∑
i∈S1

kiπ2i(1−π2i)hih′
i

}−1

∑
i∈S1

π−1
1i (1−π2i)hiyi andki is

a weight associated with uniti used in the estimation ofα . Typically, ki = 1 or ki = π−1
1i .

Using (11) in (10), we obtain

ŶPSA−Y = (ŶE −Y)+ (ŶL −ŶE)+Op

(

N
n

)

. (12)

Ignoring the higher order terms in (12), the conditional bias of the PSA estimator attached
to responding uniti can be approximated by

BPSA
i (I1i = 1, I2i = 1) = E1E2(ŶPSA−Y|I1, I1i = 1, I2i = 1).

After some tedious but relatively straightforward algebra, we obtain

BPSA
i (I1i = 1, I2i = 1)

.
= ∑

j∈U

(

π1i j

π1iπ1 j
−1

)

y j −π−1
1i (π−1

2i −1)
(

yi −c′iγ
)

− c′iT
−1 ∑

j∈U

(

π1i j

π1iπ1 j
−1

)

(1−π2 j)
(

y j −c′jγ
)

h j , (13)

whereci = kiπ1iπ2ihi andγ = T−1 ∑
i∈U

(1−π2i)hiyi with T = ∑
i∈U

kiπ1iπ2i(1− π2i)hih′
i. A

robust version of̂YPSA is given by

ŶR
PSA= ŶPSA− ∑

i∈S2

B̂PSA
i (I1i = 1, I2i = 1)+ ∑

i∈S2

ψ
{

B̂PSA
i (I1i = 1, I2i = 1);c

}

,
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whereB̂PSA
i (I1i = 1, I2i = 1) is a suitable estimator ofBPSA

i (I1i = 1, I2i = 1). Once again,
we determine the value ofc that minimizes max{B̂RPSA

i (I1i = 1, I2i = 1) : i ∈ S2}, where
B̂RPSA

i (I1i = 1, I2i = 1) is an estimator of the conditional bias of the robust PSA estimator
attached to uniti.

In practice, it is customary to partition the population into weighting adjustment cells,
U1, . . . ,UG. The response probability attached to uniti in cell g is estimated by realized
response rate within the associated cell; that is,

π̂2i = π̂2g =
∑i∈S2∩Ug

π−1
1i

∑i∈S1∩Ug
π−1

1i

, for i ∈Ug. (14)

Assuming that nonresponse is uniform within cells, i.e.,π2i = π2g for i ∈ Ug, the PSA
estimator (9) is an asymptotically unbiased estimator of the population totalY.

Note that the estimated response probabilities given by (14) can alternatively be ob-
tained by fitting the parametric model (8) withxi = (δ1i , . . . ,δGi)

′, whereδgi is a class
indicator such thatδgi = 1 if unit i ∈Ug andδgi = 0, otherwise. Therefore, the conditional
bias of the PSA estimator based onG weighting cells attached to uniti can be obtained as a
special case of (13), which leads to

BPSA
i (I1i = 1, I2i = 1)

.
= ∑

j∈U

(

π1i j

π1iπ1 j
−1

)

y j +π−1
1i

(

π−1
2g −1

)

(yi −Ȳg) for i ∈Ug,

whereȲg = ∑i∈Ug
yi/Ng with Ng denoting the size ofUg.
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