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Abstract

Influential units occur frequently in surveys, especiatiythe context of business
surveys that collect economic variables whose distrilmstare highly skewed. A unit
is said to be influential when its inclusion or exclusion frra sample has an impor-
tant impact on the magnitude of survey statistics. We extkadesults of Beaumont
et al. (2013) to the case of two-phase sampling designs. \ieedthe concept of
conditional bias attached to a unit with respect to both pbasd propose a robust
version of the double expansion estimator, which dependstoning constant. Fol-
lowing Beaumont et al. (2013), we determine the tuning amtsivhich minimizes
the maximum estimated conditional bias. Our results caraerally extended to the
case of unit nonresponse, the set of respondents often bieingd as a second phase
sample.

Key words: Conditional bias; influential value; two-pase samplingiglesrobust estimation; unit
nonresponse.

1 Introduction

Two-phase sampling is often used in surveys when the sagifphme contains little or no

auxiliary information. In this case, it may be wise to firskest a large sample in order to
collect data on variables that are inexpensive to obtainthatlare related to the charac-
teristics of interest. Using the variables observed in tret fihase, an efficient sampling
procedure can then be used to select a (typically small)asoplke from the first-phase
sample in order to collect the characteristics of interd$te theory behind inference for
two-phase sampling design may also be helpful in the coofextit nonresponse since the
set of respondents is often viewed as a second phase sample.

Influential units occur frequently in surveys, especiahijthe context of business sur-
veys that collect economic variables whose distributioeshéghly skewed. The presence
of influential units in the sample does not introduce a biasldmd generally to very un-
stable estimators. Methods for dealing with influentialtsimclude winsorization and M-
estimation; see e.g., Beaumont and Rivest (2009) and Be#uwhal. (2013).

In this paper, we extend the results of Beaumont et al (20dB8)rii-phase sampling
designs, who suggested constructing robust estimatorspmilg@tion totals based on the
concept of conditional bias of a unit; see also Moreno-Rebet al. (1999, 2002). The
conditional bias of a unit can be viewed as an appropriatesareaof influence in finite
population sampling.

2 Set-up

Consider a populatiob) of sizeN. We are interested in estimating the population total

Y = 5 V; of a characteristic of interest We select a sample according to a two-phase
ieU
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sampling design: in the first phase, a sanfpleof sizeny, is selected frontJ according
to a given sampling design(S;). In the second phase, a sam#g, of sizen,, is selected
from S according top($:|S1). We develop our results for invariant two-phase sampling
design, which are those designs that sat®f$|S;) = p(S). Our results can be extended
to cover non-invariant two-phase designs.

We adopt the following notation: léf; be a sample selection indicator attached to unit
such thaty; = 1 if uniti is selected irg; andly; = O, otherwise, and ldt; = (14, -, IN)’. Let
loi be a sample selection indicator attached to usitch thati;; = 1 if unit i is selected in
S andly =0, otherwise. Letn; = P(l; = 1) andrm;; = P(ly; = 1,115 = 1) denote the first-
order and second-order probabilitiesSn Similarly, let7e; = P(ly = 1{ly; = 1) andmsj =
P(la =11 = 1\I1i =1,11j = 1) denote the first-order and second-order probabilities in
S.

A basic estimator oY is the double expansion estimator

Yoe = S mlmty (1)

ie
To study the properties of (1) , we express its total error as :
Yoe —Y = (Ye = Y) + (Yoe — Ye), (2)

whereYg = _251 nfilyi denotes the expansion estimator that one would have usethéad
le
design been a single phase design. The tétmsY andYpe — Ye on the right hand side
of (2) denote the errors due to the first phase and second ,plesgeectively. LeE;(.)
andVy(.) denote the expectation and variance with respect to thepfiase ande,(. |l1)
andV,(.|l1) denote the conditional expectation and conditional vaeawith respect to
the second phase. Noting thai(Yoe [11) = Ye andEs(Ye) =Y, it follows from (2) that
Ep(Yor) = E1E2(Yoe |11) = Y; that is,Yoe is design-unbiased fof. The total variance of
Yoe IS

Vp(Yoe) = ViE2(Yoe [11) + EaVa (Yoe |11) = ; ZJ I 1)viyj, )
i€l je TII*TIT
wherert” = ;T andn{j = Thjj Tjj .

In the presence of influential units, the estimator (1) rermdesign-unbiased. However,
its design variance may be very large. In other words, inoydr excluding an influential
unit from the calculations may have an important impact emtlagnitude of the total error,
Yoe — Y. An influential unit may have a large impact on the first phasergYz — Y, and/or
on the second-phase errtise — Ye.

3 Measuring the influence: the conditional bias

For uni-phase sampling designs, Moreno-Rebollo et al. 412902) introduced the concept
of conditional bias attached to a unit as a measure of infljesee also Beaumont et al.
(2013). We extend this concept to the case of two-phase saymisigns. We distinguish
between three types of units: (i) the sample units, i.e.uttis for whichly; = 1 andly = 1;

(i) the units selected in the first-phase sample but notérsttcond phase, i.e., the units for
whichl;; = 1 andly = 0 and (iii) the non-selected units, i.e., the units for wHigh= 0 and
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I = 0. It is worth noting that each type of unit may have an infleeon the total error.
However, only the influence of the sample units can be redat#te estimation stage. In
other words, nothing can be done for (ii) and (iii) at thigggta

The conditional bias of sampled uniis defined as :

BPE(ly =115 =1) = EiEx(Yoe —Y|l1,ly =115 =1)
= El(YE—Y\Ili:1)+E1E2(YDE—YE\I1,I1i:1,I2i:1).

For an arbitrary two-phase design, we obtain

BOE(ly =11y =1) — ( Thij _> Thij <7T2ij _1> |
(=112 =1) ,ZJ T8 TH ZJ i \mm; )
Tf’f

= jEZI (rq*—;q*_l>yj' (4)

Example 1 For simple random sampling without replacement in both pka¢4) reduces
toBPE(li =115 =1) = (N o (N ) (yi —Y), whereY =Y /N. The previous expression
suggest that a unit has a large influence if its y-value is famfthe population mea¥.

Example 2 For Poisson sampling in both phases, (4) reduces t%6(B; = 1,15 = 1) =
(! —1)y;. Hence, a unit has a large influence if its "total weight™* is large and/or
if its y-value is large.

Example 3 For an arbitrary design in the first phase and Poisson sangpiinthe second
phase, (4) reduces to

BPE(li =115 =1) = Z, ( o _l>yi + nl_il(nz_il_l) Yi- (5)
j€

ThiTh
Expression (5) will be particularly useful in the contextusiit nonresponse.

In general, the conditional bias (4) is unknown as it depamdpopulation quantities. An
estimator oBPE (Iy; = 1,15 = 1) is given by

BPE(li=113=1) = EE<£—1>yj. (6)

s, Thij Tlij \ 77 T

The estimatoBAiDEA(Ili = 1,15 = 1) is conditionally unbiased fdBPE(13; = 1,15 = 1) in the
sense thaE B, {BPE (I = 1,15 = 1)[11, 15 = 1,15 =1} =BPE (1 = 1,15 = 1).

4 Robustifying the double expansion estimator

Following Beaumont et al. (2013), we consider the robussivarofYpe

YR =VYoe — %{BPE(lﬂ =115 =1)} +éw{|§PE(|ﬂ =1lx=1);c}, (7

ie

where (.) is a function, which role consists of curbing the impact dfuential units
andc is a tuning constant whose value must be determined. We essoticalled Huber
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function given byy(z c) = sign(z) x min(|z|,c), wherec is a positive tuning constant and
sign(z) = 1, forz > 0, while sigr(z) = —1, otherwise.

Whenrp =1 for alli € S (i.e., the case of a single phase sampling design), thetrobus
estimator (7) reduces to that proposed by Beaumont et all3j20A suitable value for
c is sometimes determined by minimizing an estimator of theammsquare error of the
robust estimator (e.g., Kokic and Bell, 1994; and Rivest dndubise, 1995). Following
Beaumont et al. (2013), we consider an alternative methadhatonsists of finding the
value ofc that minimizes mafBRPE(I;; = 1,15 = 1) : i € S}, whereBRPE(Iy; = 1,15 = 1)
is an estimator of the conditional bias of the robust doukfgasion estimator attached to
uniti. Using (4), we obtain

BPDE(Ili = 17 I2i - l) == E]_EZ(?DRE —Y|| 1, Ili = 17 I2i = 1)
= BPE(ly =11y = 1) + E1E {A(C)|I 1, I3 = 1,15 = 11,

where
A(c) = Zz[w{BDE li = 1,15 =1);c} —BPE(ly = 1,15 = 1)] .

13
As for BPE(13; = 1,15 = 1), the conditional biaBRPE(13; = 1,15 = 1) is generally unknown.
We estimate it by
BRPE(I;; = 1,15 = 1) = BPE(Iy = 1,15 = 1) + A(c),
which is conditionally unbiased f@RPE(Iy; = 1,15 = 1); i.e
E1E2 {BRPE(Iy = 1,15 = 1)|11, 15 = 1,1 = 1} = BRPE(I = 1,15 = 1).

Let BPE — mm{BDE li=1l=1):i €S} andBPE — max{éiDE(Ili =Llx=1):ieS}.
The value ofA(c) that minimizes mafBRPE(13; = 1,15 = 1) :i € S}, denoted byA(Cminma),
is given by

BPE + BPE ).

A(Cminmax) = — 2(

Noting thatYZ:- (c) = Yoe + A(c), the resulting robust estimator is given by
1
Z(Bm|n+ Bi'I:T)]EiX)

This estimator can be obtained without actually computimg Yaluecminmax SO that no
iterative process is required.

?[IJQE (Cminmay) = ?DE

5 Application to unit nonresponse

In this section, we consider the problem of robust estinmaitiothe context of unit nonre-
sponse. In this contex&; denotes the sample selected from the population, wh&eas
denotes the random set of respondents. The quanittjtiesd l,; denote respectively the
sample selection indicator and the response indicatoctedthto uniti. Also, mm; and 15,
denote respectively the inclusion probability in the saraid the response probability for
uniti. We assume that the units respond independently of oneemdtiat is7ei; = 75 75,

fori # j. This is similar to Poisson sampling described in Examplex8ept that thap;’'s

are now unknown. If thep;'s were known, a propensity score adjusted (PSA) estimator
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would be given by (1) and the conditional bias of a respondinigy would be given (5). In
practice, the response probabilitigs are unknown and must be estimated. We assume that
they can be parametrically modeled by

B = m(X;, a), (8)

wherem(.) is a known functionx is a vector of auxiliary variables available for all the
sampled units (respondents and nonrespondentsy asd vector of unknown parameters.
A special case of (8) is the logistic regression model. Base(B), an estimator ofg; is
given by 75 = m(xi, &), where& denotes a suitable estimator @f(e.g., the maximum
likelihood estimator). A PSA estimator ¥fis thus given by

- 1
PSA iezz — Yi 9)
The total error offpsacan be expressed as
?PSA_ Y = (?E — Y) + (?PSA_ ?E) (10)

The term&¥e — Y andYpsa— Y in (10) denote the sampling error and the nonresponse error,
respectively. Using a first-order Taylor expansion (Kim #tich, 2007), we have

n N N
Ypsa— YL =Op <F> ; (11)

where |
?L: Tliil{kiﬂliﬂzhi/?+nizl_(Yi—kinlinZihi/V)}
|

ie

-1
with h; = d {logit(1&)} /da, y = { 5 kiTei(1— nzi)hihi’} s 151 (1—m8i)hiy; andk is
€S ieS

a weight associated with uriitused in the estimation af. Typically, ki = 1 ork, = n:fil.
Using (11) in (10), we obtain

?pSA—Y:(?E—Y)—I—(?L—?E)—I—Op <§> . (12)

Ignoring the higher order terms in (12), the conditionaklafthe PSA estimator attached
to responding unit can be approximated by

BPSAly = 1,12 = 1) = EaEa(Yesa— Y11, l1i = 1,12 = 1).
After some tedious but relatively straightforward algelwa obtain

BPSAly =115 =1) = Eo <ﬂ

o —1>yj -1, (15" = 1) (yi — Giy)

IE

- Ci'T_lj; (ﬂ—l>(1—7&j)(yj'—0’j)’)hja (13)

ThiThj

wherec; = ki Tpih; andy = T—1 S (L—mm)hiy with T = 5 kimmiei(1— ei)hihf. A
icU ieU
robust version ofpsais given by

Yesa=Yosa— § BPM =11 =1+ § ¢{B lu=11z5=1);c},

ie i€
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whereBPSAly; = 1,15 = 1) is a suitable estimator @PSA1y; = 1,15 = 1). Once again,
we determine the value af that minimizes mafBR"SA1y; = 1,15 = 1) 1 i € S}, where
BRPSAIy = 1,15 = 1) is an estimator of the conditional bias of the robust PSAeattr
attached to unit.

In practice, it is customary to partition the populationoimteighting adjustment cells,
U1,...,Us. The response probability attached to unih cell g is estimated by realized
response rate within the associated cell; that is,

) —1
iy = Ty = 2ieSnU Thi nl_'l, for i € Ug. (14)

zieSng nli

Assuming that nonresponse is uniform within cells, i, = Tpq for i € Ug, the PSA
estimator (9) is an asymptotically unbiased estimator efgbpulation tota¥ .

Note that the estimated response probabilities given by ¢aa alternatively be ob-
tained by fitting the parametric model (8) with = (J4,...,dci)’, where gy is a class
indicator such thaby = 1 if unit i € Uy and gy = O, otherwise. Therefore, the conditional
bias of the PSA estimator based @iweighting cells attached to unitan be obtained as a
special case of (13), which leads to

7T.. _ .
Bl =1lx=1) = ED ( . 1> yj+ gt (712’91— 1) (vi—Yq) forieUy,
IS

ThiThj

whereYy = ¥icy, ¥i/Ng with Ny denoting the size dfly.

References

[1] Beaumont, J.-F., Haziza, D. and Ruiz-Gazen, A. (2013un#ied approach to robust
estimation in finite population sampling. To appear in Bitrka.

[2] Beaumont, J.-F. and Rivest, L.-P. (2009). Dealing wititliers with survey data. Hand-
book of Statistics, Volume 29, Chapter 11, Sample Surveysoly Methods and In-
ference, Editors: C.R. Rao and D. Pfeffermann, 247-279.

[3] Kim, J.K. and Kim, J.J. (2007). Nonresponse weightinguatinent using estimated
response probability. The Canadian Journal of Statis3®ss501-514.

[4] Kokic, P.N., and Bell, P.A. (1994). Optimal Winsorizirautoffs for a stratified finite
population estimator. Journal of Official Statistics, 1094435.

[5] Moreno-Rebollo, J.L., Mufioz-Reyez, A.M. and Mufioz{acdo, J.M. (1999). Influ-
ence diagnostics in survey sampling: conditional biasnigitrika, 86, 923—968.

[6] Moreno-Rebollo, J.L., Mufioz-Reyez, A.M., Jimenez-Gam M.D. and Mufioz-
Pichardo, J. (2002). Influence diagnostics in survey sargplestimating the condi-
tional bias. Metrika, 55, 209-214.

[7] Rivest, L.-P. and Hurtubise, D. (1995). On Searls Winmad means for skewed popu-
lations. Survey Methodology, 21, 119-129.



