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Abstract

Experiments with functional data are becoming ubiquitous in science and engineering
with the increasing use of online monitoring and measurement. Each run of the
experiment results in the observation of data points that are realised from a smooth
curve. Although large quantities of data may be collected from each run, it may still
only be possible to perform small experiments with a limited number of runs.

We describe statistical methodology for an example from Tribology, concerning the
wear-testing of automotive lubricants. Here, we investigated how lubricant properties
and process variables affected the shape of a functional response measuring wear.
Novel techniques were developed for the initial design of a screening study where the
levels of some of the factors could not be set directly. A two-stage semi-parametric
modelling approach was applied, using a varying coefficient model and principal
components. New methods for the design of follow-up experiments for such models
were also developed and applied. In addition to the new methodology, we present
conclusions from the case study about which factors had substantial effects, and how
they influence the shape of the wear curves.

Keywords: D-optimality, hierarchical modelling, principal components, screening,
varying coefficient modelling.

1. Introduction

In many industrial and scientific experiments, each run can now produce substantial
amounts of data collected using automatic monitoring and measurement systems.
Often, it can be assumed that these data are generated by a smooth underlying
function (Ramsay and Silverman, 2005) and that the measurement processes are
sufficiently effective for function to be accurately reconstructed. Then, the data can
assumed to be functional, with the output from each run of the experiment being
a smooth function, typically not having a simple parametric form. Further, these
functions may vary between runs of the experiment, potentially due to aleatoric (i.e.
random) variability and systematic variability which results from the application of
different combinations of values of the controllable variables.

In this short paper, we use such an example from Tribology to motivate and demon-
strate methodology for the design of experiments and two-stage modelling of func-
tional data. In Section 2, the Tribology study is introduced and the experiment
described. Section 3 describes our two-stage modelling strategy, and presents some
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Figure 1: Four example Stribeck curves obtained using different lubricants and dif-
ferent process conditions

analysis of the Tribology data. Finally, we briefly discuss some issues for the design
of experiments in Section 4.

2. Motivating example

Tribology is the study of interacting surfaces in relative motion. Our example exper-
iment investigates friction between two surfaces (a ball and a disc) for a variety of
different lubricant types (described via their chemical properties) and process condi-
tions. In this study, friction is measured by the coefficient of friction as represented
by a Stribeck curve (Stribeck, 1901; Dowson, 1998, pp. 344-345). For a given com-
bination of lubricant and process conditions, this curve describes the relationship
between the coefficient of friction and a dimensionless function of speed, load and
viscosity. Figure 1 shows example Stribeck curves from four different runs of our
experiment, where coefficient of friction is plotted against log speed. These curves
are examples of functional data.

In addition to providing the coefficient of friction, Stribeck curves also help to deter-
mine when the system under study enters different lubrication regimes, and hence
when different lubricant properties may be required. For example, the curves in
Figure 1 (a) and (d) are in the boundary/mixed region, whilst (b) and (c) are in the
mixed/elasto-hydrodynamic region. A predictive model for Stribeck curves, in terms
of lubricant properties and process variables, could therefore have considerable value
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in the lubricant development process.

We briefly describe the modelling of data from a 20 run screening experiment per-
formed to investigate the impact of 13 factors (11 lubricant properties and two process
variables) on the shape of the Stribeck curve. The experiments were run on a Mini
Traction Machine (MTM). This involved a ball rotating against a spinning disc for
approximately 6 hours. Lubricating oil was placed between the ball and the disc
before the start of each run and a different disc and ball surface was used for each
run. The Stribeck curve was obtained by slowly reducing the speed of the disc at
the end of the experiment. Measurements of the coefficient of friction were obtained
automatically by the MTM for 21 speeds per run. The Stribeck curves can then be
displayed as a plot of coefficient of friction against log(speed).

3. Two-stage modelling

A two-stage semi-parametric procedure was used to model the data with, at the first
stage, a model for each curve being constructed in terms of principal components
(PCs; see, for example, Jolliffe, 2002). At the second stage, the PC loadings were re-
lated to the lubricant properties and process variables. A similar two-stage approach
has been applied to a variety of other applications, including engine mapping (Grove
et al., 2004) and linguistics (Aston et al., 2010).

3.1. Stage 1: principal component models for each Stribeck curve

At the first stage, a common model is fitted to each curve. Let G be a 21 × 20
matrix containing the observed Stribeck curve data points. We used singular value
decomposition to express G as

G = UZVT , (1)

where (1/
√

20)UZ gives the principal components and
√

20V contains the loadings
on each principal component for each run. The principal components are ordered
so that they sequentially explain the highest proportion of variation in the observed
Stribeck curves.

In this case, the first four components explain 98.6% of the overall variation and hence
we model the Stribeck curves using linear combinations of the first four principal
components. The weights used in the linear combinations are the loadings from (1).

Let Dj be the jth principal component (dimension 21× 1) and lij be the loading for
the ith run on the jth principal component. Then the model for the observed data
for the ith run, Yi, can be written as

Yi =
4∑

j=1

Djlij + Ei ,
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where Ei is a 21× 1 vector of independent errors from N(0, σ2).

3.2. Stage 2: linear modelling of the PC loadings

In the second stage of the modelling procedure, we model the loadings for the prin-
cipal components in terms of the variables in the experiment. We fit the following
models for i = 1, . . . , 20 and j = 1, . . . , 4.

lij = xiβj + fij , (2)

where xi denotes the ith row of the model matrix, βj is a vector of unknown coeffi-
cients to be estimated from the data and fij is the second stage error on the loading
for the jth principal component for the ith run. The vector of errors for the ith
run, (fi1, fi2, fi3, fi4), is distributed as N(0,∆). Note that this distribution does not
depend on i.

All the second stage models were fitted simultaneously using maximum likelihood
estimation, allowing for the possibility of correlation between the lij and also addi-
tional within-run variation. Initially, a model containing only main effects was fitted.
However, this model was deemed inadequate after studying residuals and measures
of predictive quality. Hence, it was required to consider two-variable interactions us-
ing model selection techniques. We employed the Dantzig selector (Candes and Tao,
2007), which has been shown to be particularly effective for the analysis of super-
saturated designs with n < p (Phoa et al., 2009; Marley and Woods, 2010; Draguljić
et al., 2013). Separate model selection exercises were conducted for each of the four
PC loadings, and main effects were added, as necessary, to the identified models to
ensure marginality and ease of interpretation. Four fitted curves from the second
stage model are given in Figure 2 with approximate 95% Wald confidence intervals
(Woods, 2003, ch. 4).

All four of the example fits closely match the shape of the observed Stribeck curves.
The confidence intervals were judged by subject experts to be narrow enough for the
model to be useful. In the vast majority of the 20 runs, the fitted model captures
very accurately the shape of the curve. Discrepancies between the fitted curve and
the observed curve tend to come in the form of an upward or downward shift. This
is due to the nature of the two-stage fitting procedure. For example, a small error
in the prediction of the loading for the first principal component will result in an
upward or downward bias.

4. Design issues

Design of the initial 20 run screening experiment was complicated by 11 of the
controllable variables being properties of the formulated lubricants that cannot be
set independently (see also Scinto et al., 2011). The values taken by these properties
are determined by the values taken by 11 different ingredients. In addition, although
20 runs of the experiment were possible, only 12 unique lubricants could be used. A
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Figure 2: Four example Stribeck curves (solid line) and their second-stage fits (dashed
line) with approximate 95% confidence intervals (dotted lines).

novel coordinate exchange algorithm was used to find a D-optimal design, that is,
the amount of each ingredient for each run along with settings of the two process
variables (load and disc roughness).

After the initial screening experiment, 10 further runs were made in order to improve
the model. Marley (2010) gives further details of both designed experiments.
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