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Abstract

This work considers clustering for mixed symbolic data whereby realizations of some random variables

are interval-valued, some histogram-valued, and some are modal and/or non-modal multi-valued.

Keywords: extended Gowda-Diday and Ichino-Yaguchi dissimilarities, agglomerative clustering.

1. Introduction

Contemporary databases can be too large to be analysed by traditional methods. One approach

is to aggregate the data according to whatever scientific question(s) are driving the analysis. The

resulting data are perforce intervals, lists, histograms, and the like, which formats are but examples

of symbolic data (Diday, 1987). This work will look at clustering for data sets in Rp of mixed types

whereby some random variables take interval realizations, some histogram realizations, and/or some

are modal or non-modal multi-valued realizations. For example, a census collects information on

individuals. These individual values are aggregated according to some geographical-social-scientific

question(s) of interest, such as by region, city, state, age×gender, income, etc. Depending on the nature

of the original observations and the nature of the aggregation, the data are subsequently recorded as,

e.g., histograms over a range of suitable subintervals, lists of possible categorical entities, and so forth.

Our focus is on data which contain a mixture of types of symbolic realizations. This will first

involve the calculation of distance/dissimilarity measures. Such measures have been introduced for

interval and non-modal categorical data by Gowda and Diday (1991) and Ichino and Yaguchi (1994)

with adaptations of the Ichino-Yaguchi distances for intervals developed by de Carvalho (1994, 1998).

Chavent (1998) used the Hausdorff (1937) distance in a divisive clustering for interval data, while

Kim and Billard (2012) developed a divisive clustering for multi-modal data. More recently, Kim

and Billard (2013) introduced dissimilarity measures for histogram-valued realizations and for modal

categorical data. In Section 3, we combine these concepts so as to obtain a distance/dissimilarity

matrix for a set of data that has interval, histogram and categorical data. Then, in Section 4, we

obtain clusters using an agglomerative clustering algorithm. The methodology is illustrated through

the a mixed-valued data set obtained from census records, described in Section 2.

2. The Data

We have a random sample of m realizations of the random variable Y = (Y1, . . . , Yp) taking

values in Rp. Modal categorical realizations take the form

(1) Yuj = {ξujk, pujk; k = 1, . . . , suj},
suj∑
k=1

pujk = 1, j = 1, . . . , p, u = 1, . . . ,m,

where ξujk, k = 1, . . . , suj , is the list of categorical values from the set of possible categorical values

Yj , j = 1, . . . , p, that actually occurred for observation u = 1, . . . ,m, and where pujk is the relative

frequency or probability associated with the value ξujk. Without loss of generality, we can write

Proceedings 59th ISI World Statistics Congress, 25-30 August 2013, Hong Kong (Session IPS079) p.792



suj = sj and set pujk ≡ 0 for those categories k that do not occur in Yuj .

When realizations are histogram-valued, they take the form

(2) Yuj = {[bujk, buj,k+1), pujk; k = 1, . . . , suj}, j = 1, . . . , p, u = 1, . . . ,m,

where the histogram Yuj consists of suj subintervals [bujk, buj,k+1) (with bujk ≤ buj,k+1) occurring with

relative frequency pujk. Typically, the length and number of subintervals will vary across observations

and variables. However, without loss of generality, the observations can be transformed into histograms

with common subintervals and the same number of subintervals. Therefore, for all terms in the right-

side of (2), except for the relative frequency term pujk, the u subscript can be dropped; see Kim

and Billard (2013) for details. While not necessary theoretically, this transformation allows for easier

computational efficiency.

Non-modal realizations are special cases of (1) and (2). Thus, a list of categories from Yj ,
j = 1, . . . , p, has the same format as in (1) but where now each of the possible values that actually

occur is assumed to be equally likely and so has in effect a relative frequency of 1/suj . Interval data

are special cases of histograms in (2) with suj ≡ 1 and hence pujk = 1 for all k, j, u.

The data set considered herein consists of realizations of household characteristics for m = 10

counties (Fresno, Humboldt, Lassen, Mariposa, Merced, Napa, Orange, Riverside, San Joaquin, San

Mateo). Specifically, we have Y1 = Age (with s1 = 12 histogram subintervals: {[0, 4), [4,17), [17,

20), [20,24), [24, 34), [34,44), [44,54), [54, 64), [64, 74), [74, 84), [84, 94), [94, 120]} years old), Y2 =

Home value (with s2 = 7 histogram subintervals: {[0, 49), [49, 99), [99, 149), [149, 199), [199, 299),

[299, 499), [499, 1000]} in $1000’s), Y3 = Gender (with modal categories Y3 = {male, female}), Y4 =

Fuel type used in the home (with non-modal categorical values taken from Y4 = {gas, electricity, coal,

oil}), Y5 = Tenure (with modal categorical values taken from Y5 = {owner occupied, renter occupied,

vacant}), and Y6 = Income (with interval values from the real line R). To illustrate realizations for

Fresno County are shown in Table 1. The data were extracted from Census (2000).

Table 1 - Census Mixed-valued Observations

Variable Symbolic realizations for Fresno

Age {[0,4),.085; [4,17),.236; [17,20),.051; [20,24),.060; [24,34),.140; [34,44),145;

[44,54),.115; [54,64].039; [64,74),.031; [74,84),.052; [84,94),.034; [94,120],.012}
Home {[0,49),.037; [49,99),.432; [99,149),.290; [149,199),.126; [199,299),.080; [299,499),.028;

value [499,1000],.009}
Gender { male, .499; female,.501}
Fuel {gas, electricity}
Tenure {owner,.527; renter,.407; vacant,.066}
Income [23.7, 44.8]

3. Distance-Dissimilarity Measures

Unlike classical realizations (which are points in Rp,), symbolic realizations are hypercubes in Rp or

lists in Yp, and so observations can overlap. One consequence is that in deriving distance/dissimilarity

measures between any two observations, it is necessary to obtain meet and join terms when dealing

with non-modal data and union and intersections terms for modal data (i.e., for modal categorical

and histogram data). The Gowda-Diday dissimilarity between two observations Yu1 and Yu2 is
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(3) d(Yu1 , Yu2) =
∑
j∈H

dj(Yu1 , Yu2) +
3

2

∑
j∈C

dj(Yu1 , Yu2), u1, u2 = 1, . . . ,m,

where H is the set of variables j which are interval or histogram valued and C is the set with modal

or non-modal categorical values. Since the Gowda-Diday dissimilarities have two terms for categorical

realizations and three for interval-histograms realizations, the 3/2 factor is necessary so that each

component has the same range measure.

The appropriate dissimilarities for non-modal categorical and interval data are well known and

were established by Gowda and Diday (1991). For observations with Yj taking modal categorical

values, Kim and Billard (2012) extended the original Gowda and Diday (1991) results to give the

dissimilarity, dj(Yu1 , Yu2), between Yu1 and Yu2 as

(4) dj(Yu1 , Yu2) = d1j(Yu1 , Yu2) + d2j(Yu1 , Yu2), u1, u2 = 1, . . . ,m,

where

(5) d1j(Yu1 , Yu2) =

∑sj
k=1 |pu1jk − pu2jk|∑sj

k=1 p(u1∪u2)jk

, d2j(Yu1 , Yu2) =

∑sj
k=1(pu1jk + pu2jk − 2p(u1∩u2)jk)∑sj

k=1 p(u1∪u2)jk

where the union p(u1∪u2)jk and intersection probabilities p(u1∩u2)jk are, respectively,

(6) p(u1∪u2)jk = max{pu1jk, pu2jk}, p(u1∩u2)jk = min{pu1jk, pu2jk}.

When the realizations for Yj are histogram valued, the extended Gowda-Diday dissimilarity is

(7) dj(Yu1 , Yu2) = D1j(Yu1 , Yu2) +D2j(Yu1 , Yu2) +D3j(Yu1 , Yu2)

where

(8)

D1j(Yu1 , Yu2) =
|Su1j − Su2j |
(Su1j + Su2j)

, D2j(Yu1 , Yu2) =
Su1j + Su2j − 2S(u1∩u2)j

(Su1j + Su2j)
, D3j(Yu1 , Yu2) =

|Ȳu1j − Ȳu2j |
Ψj

where Ȳuj and Suj are the mean and standard deviation, respectively, for a single observation (Yu,

u = u1, u2), S(u1∩u2)j is the standard deviation of the intersection of Yu1 and Yu2 , and Ψj = (bjsj −bj1)
is the span of values across all {Yu, u = 1, . . . ,m}. See Kim and Billard (2013) for details and examples.

The generalized Minkowski distance based on, e.g., the Ichino-Yaguchi dissimilarity, is

(9) d(q)(Yu1 , Yu2) =

∑
j∈H

dqj(Yu1 , Yu2) +
∑
j∈C

dqj(Yu1 , Yu2)

1/q

, u1, u2 = 1, . . . ,m.

Ichino and Yaguchi (1994) developed dissimilarities between two non-modal, and two interval,

observations. These were extended to their modal counterparts in Kim and Billard (2013). Thus, for

a given variable Yj , the dissimilarity between two modal categorical observations becomes

(10) dj(Yu1 , Yu2) =

sj∑
k=1

[p(u1∪u2)jk − p(u1∩u2)jk + γ(2p(u1∩u2)jk − pu1jk − pu2jk)]
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with union and intersection probabilities as in (6) and with 0 ≤ γ ≤ 0.5 a pre-specified constant.

For histogram realizations, the normalized extended Ichino-Yaguchi dissimilarity is, for Yj ,

(11) dj(Yu1 , Yu2) = [S(u1∪u2)j − S(u1∩u2)j + γ(2S(u1∩u2)j − Su1j − Su2j)]/Nj

where Su, u = u1, u2, is the standard deviation of the histogram Yu and S(u1∪u2)j and S(u1∩u2)j are

the standard deviations of the union and intersection of the Yu1 and Yu2 histograms, and where the

normalization factor Nj is given by

(12) N2
j = (5V1j + 2V2j − 6V3j)/24

(13) V1j = b2j1 + b2j2 + b2j,sj−1 + b2jsj , V2j = bj1bj2 + bj,sj−1bjsj , V3j = (bj1 + bj2)(bj,sj−1 + bjsj ).

See Kim and Billard (2013).

To illustrate, suppose we want to calculate the Gowda-Diday dissimilarity matrix for the Census

county data. Then, we use (7)-(8) for the histogram variables Y1 and Y2; we use (4)-(5) for the modal

categorical variables Y3 and Y5; we use the special case of non-modal categorical data from Gowda

and Diday (1991) for the variable Y4; and we use the special case from Gowda and Diday (1991) for

the interval data of Y6. Then, from (3), we obtain the Gowda-Diday dissimilarity matrix as

(14) D =



0 . . . . . . . . .

2.450 0 . . . . . . . .

4.616 3.462 0 . . . . . . .

3.534 3.237 3.379 0 . . . . . .

0.484 2.472 4.376 3.297 0 . . . . .

4.379 4.565 6.768 6.404 4.701 0 . . . .

3.002 4.980 7.231 5.876 3.212 3.192 0 . . .

1.907 3.734 5.548 4.033 2.163 3.558 2.368 0 . .

1.462 3.488 5.882 4.425 1.767 3.384 2.016 1.048 0 .

3.612 5.237 7.601 6.138 3.606 4.095 1.526 3.505 3.12 0



.

If instead we want to calculate the Euclidean dissimilarity matrix based on the Ichino-Yaguchi

dissimilarities, then we use (11)-(13) for Y1 and Y2, we use (10) for Y3 and Y5; and the special cases

for non-modal categorical data Y4 and interval data Y6 from Ichino and Yaguchi (1994). Then, the

respective dissimilarities are substituted into (9) with q = 2. The Euclidean dissimilarity matrix is

(15) D =



0 . . . . . . . . .

0.753 0 . . . . . . . .

1.530 0.804 0 . . . . . . .

0.805 0.795 0.778 0 . . . . . .

0.045 0.753 1.526 0.804 0 . . . . .

0.849 0.871 1.579 1.568 0.857 0 . . . .

0.627 1.014 1.662 1.011 0.642 0.798 0 . . .

0.290 0.813 1.533 0.794 0.285 0.784 0.442 0 . .

0.272 0.820 1.557 0.851 0.285 0.778 0.366 0.181 0 .

0.838 1.157 1.754 1.145 0.847 0.878 0.228 0.658 0.595 0



.
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The literature includes a number of other distance matrices. For example, Irpino and Verde

(2006) developed a type of Wasserstein distance using inverse cumulative distributions. DeCarvalho

(1994, 1998) derived extensions to the Ichino-Yaguchi distances. Kim and Billard (2013) extended the

deCarvalho (1994, 1998) distances to histogram data. Kim (2009) reviews these among others. Any

one of these distances can then be substituted into (9) to obtain relevant Minkowski distances.

4. Clustering

There are many hierarchical clustering procedures for classical data and for interval and his-

togram data. See, e.g., Gordon (1999) for a review of classical procedures. Chavent (1998) has

developed a divisive procedure for interval data, and Kim and Billard (2011) has a polythetic divisive

procedure for histogram data, among others. Others, such as de Carvalho et al. (2008), have consid-

ered partitioning techniques. All these methodologies assume that all variables are of the same type

(e.g., all interval realizations).

In this work, we implement an agglomerative procedure to our mixed-value data. There are

many possible agglomerative methods in the literature. These include single-link (or ”nearest neigh-

bor”) methods, complete-link (or ”farthest neighbor”) methods, Ward’s (or, ”minimum variance”)

methods, average-link (group average and weighted average), median-link, flexible, and so on. See,

e.g, Anderberg (1973), Jain and Dubes (1988), Gower (1971), Symons (1981). Since these method-

ologies developed for classical data are based on a distance/dissimilarity matrix, they can be easily

extended to the corresponding matrices calculated from symbolic data.

In particular, Figure 1 shows the resulting hierarchy when the average-linkage agglomerative

method is applied to the Gowda-Diday matrix of (14). In contrast, Figure 2 shows the corresponding

hierarchy when using the Euclidean Ichino-Yaguci matrix of (15). It is immediately seen that the

hierarchies are different, with Napa and Humbolt counties appearing in different parts of the respective

trees. This is a not-so-surprising result since it is well known that different distances can produce

different tree structures. Likewise, using different agglomerative methods (e.g., complete-link instead

of average-link) can produce different trees.
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Figure 1 - Gowda-Diday Distances Figure 2 - Ichino-Yaguchi Distances
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