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Abstract 

 

The successive innovations of measurement technology have provided direct evidence 

that can be used to identify the molecular mechanisms behind biological phenomena. 

The findings and accompanying data are usually deposited in public databases. In this 

article, we report some attempts to measure adaptive mutations and selection pressures 

by integrating multiple sources of information through spatiotemporal statistical 

modeling of the likelihood and the prior distribution. In the first attempt, we quantified 

the chance of adaptive mutations in a viral population by integrating a population 

dynamics model, a formula in population genetics, biological sequence data, and 

information from the protein structural database. In the second attempt, we measured 

the response to stresses by the graphical modeling of gene expression and phenotypes. 

The chronological order data and the information from biological databases determine 

the constraints on the graph space. Instead of attempting to estimate the whole 

interaction network, we reconstructed a maximal connected subgraph that included 

either the target phenotypes or the core pathway using the maximum entropy principle. 

 

Keywords: adaptive mutation, directed core-graph of gene expression, protein tertiary 

structure, selection pressure, statistical genetic modeling 

 

 

1. Introduction 

The biotechnology and medical sciences play significant roles in improving health and 

quality of life in modern societies. However, ecosystems are experiencing 

unprecedentedly high direct and indirect selection pressures as the result of human 

activities. As a consequence, ecosystems are responding to these stresses at an 

unprecedented pace. Sometimes, such responses cause major ecosystem changes that 

can become a threat to society. Therefore, it is important to detect and monitor such 

responses and to understand the mechanisms that drive adaptive evolution. 

RNA viruses provide an ideal opportunity to quantify the effects of mutations on 

adaptive evolution, because they have a simple life-cycle and highly mutable genomes. 

The genomes of viruses contain protein coding genes but lack the transcription factors 

and cis-elements required for gene regulation; although microRNAs that silence target 

genes have been identified recently in viral genomes. When a viral genome is 

integrated into the genome of its host, the virus uses the host cell machinery to 

produce viral proteins. It is possible that structural changes in the viral proteins may 

be a major driving force of adaptive evolution. Structural changes in the viral proteins 

might affect their interactions with the other proteins or with ligands at important 

stages of their life-cycle. 

Biological conservation and stock enhancement can change the fitness of a target 

species. For example, Araki et al. (2007) observed a decline in reproductive success 

among captive-bred salmon compared with among wild salmon. The reproductive 

success of steelhead trout was reported to vary depending, for the most part, on cross, 

year of release, and environmental conditions (Kitada et al. (2011)). Nevertheless, it is 

essential to understand the mechanisms behind changes in reproductive behaviors. The  
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Figure 1 Antibody (green) and receptor (blue) bound to the 

spike protein of the SARS virus (red). 

genomes of higher organisms contain coding sequences and regulatory elements. 

While structural changes in proteins can have a strong and mostly harmful impact on 

their activity, changes in gene expression can have mild effects that help generate the 

phenotypic diversity of a population. Because of the interactions among genes, 

changes in the expression level of a single gene can affect many components of the 

physiological and endocrine systems of an organism. 

In this paper, we predict the fate of viral mutations by integrating a population 

dynamics model, information from the protein structure database, and population 

genetics theory. We also detect the evolutionary footprint of a host-pathogen arms race 

using protein structure information to specify the prior distribution of the key 

parameter in a model of the evolutionary process. We use additional information from, 

for example, transcription factor binding sites databases, to constrain the search space 

of graphs that represent the direct and indirect effects of the selection pressure. 

 

2. Risk analysis of viral adaptation via a likelihood-based binding ability 

An example of an antibody and cell-receptor together binding to a viral protein is 

shown in Figure 1. Because the binding regions overlap, a mutation in the viral protein 

that reduces its ability to bind to the antibody may also reduce its ability to bind to the 

cell receptor. The fitness advantage of viral mutations is measured as the expected 

increase of the viral load. It can be simulated using a mathematical model of the 

population dynamics of viruses (V ), antibodies ( A ), normal cells ( NC ) and infected 

cells ( IC ) in a host (Nowak and Bangham (1996)) as: 
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The model includes two key parameters; one is the binding ability, β, of the viral 

protein to the receptor of normal cells, and the other is its binding ability, q, to the 

antibodies. We estimated the effect of mutations on the values of these parameters by 
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calculating the change of sequence-structure fitness (Watabe et al. (2007), Watabe and 

Kishino (2010)). The binding ability of two proteins A and B is measured as a 

likelihood ratio of the two protein sequences AX  and BX  given the structures of the 

free proteins ( AY  and BY ) and of the proteins in the protein complex ( BAY  ) as: 
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Because the second order approximation, the likelihood of a sequence, 

 naaX ,,1  , given the structure, Y , is calculated as: 
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Assuming that the conditional probabilities  YaP i |  and  YaaP ji |,  depend only 

on the local structure surrounding the amino acid residues, they are estimated as the 

amino acid frequencies in the proteins in the Protein Data Bank (Simons et al. (1999)). 

Using the expected value of the selective advantage, it is possible to predict the risk of 

viral adaptation by using population genetics theory (Wright (1931), Kimura (1962)). 

 

3. Detecting the region under diversifying selection using a hierarchical Bayes 

model 

Because of the arms race between virus and host, viral genomes evolve under positive 

diversifying selection. It is possible to estimate their evolutionary history by 

comparing the protein sequences. DNA triplets (the codons) in the protein coding 

sequences of genes are translated into the amino acids that make up protein sequences. 

Because of codon redundancy (64 codons code for only 20 amino acids), not all 

nucleotide substitutions change the amino acid. Positive selection is observed as an 

elevated ratio, SN dd , of the rate of nonsynonymous (dN) to synonymous 

substitutions (dS). (A nonsynonymous substitution is a one base change that produces 

an amino acid change in the sequence; a synonymous substitution is a one base change 

that does not produce an amino acid change.) Yang et al. (2000) incorporated 

heterogeneity among sites into a likelihood model to detect positive selection and 

found that positive selection was acting on a small proportion of viral proteins. 

Because amino acid residues under positive selection are generally considered to be 

spatially clustered, the region under positive selection could perhaps be estimated by 

introducing a smoothness prior (Suzuki and Gojobori (2004)). 

Assuming that the molecular evolution follows a Markov process, the transition 

rate from codon i to codon j at the h th site is described as: 

𝑞𝑖𝑗
(ℎ) =

{
 
 

 
 
0 for more than one nucleotide substitution between 𝑖 and 𝑗

𝜋(𝑗) for synonymous transversion

𝜅𝜋(𝑗) for synonymous transition

𝜔ℎ𝜋
(𝑗) for non-synonymous transversion

𝜔ℎ𝜅𝜋
(𝑗) for non-synonymous transition

, 

where 𝜋(𝑗) is the equilibrium probability and   is the transition (A ↔ G or C ↔ T) 

to transversion (A ↔ C/T or G ↔ C/T) rate ratio. Given a tree topology, T , the 

likelihood of a set of sequences,  nXXX ,...,1 , is a function of the transition 

probabilities and the equilibrium probabilities: 
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      (a) (b) 

 

 

Figure 2 Antibody (pink) bound to the hemagglutinin (HA) protein of the 

influenza virus (green) and the HA protein sequence. The neighborhood of an 

amino acid in the spatial structure and in the primary sequence is shown. (a) The 

10 Å neighborhood (orange) of an amino acid (red) in the spatial structure. (b) 

The corresponding amino acids (white) in the primary structure. 

where  TV  is the set of nodes of T , and  vanc  represents the ancestral node of 

the node v . The SN dd  ratio has the three values of purifying selection ( 11  ), 

neutral ( 1~2 ), and positive selection ( 13  ). We introduce the Ising model as a 

prior distribution of the states of ratios nss ,...,1  to express the aggregated pattern of 

amino acid residues under positive selection as: 
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where 'hhr  is the spatial distance between the Cα atoms of the h th residue and the 

'h th residue. Note that, because an amino acid sequence folds to form the protein 

structure, neighboring amino acid residues are not clustered in the primary sequence 

(Figure 2). We estimate the hyperparameters   and   by maximizing the marginal 

likelihood. 

 

4. Maximal connected subgraph including the core gene expression set 

Correlated gene expression is described well by graphical modeling. The graph 

consists of a set of nodes (or vertices), V , and a set of edges, E , that connect the 

nodes. The structure of the graph is represented by an adjacent matrix that specifies 

the presence and absence of edges between the nodes. Significant edges can be 

selected either by using the 1L -penalized likelihood approach (Friedman et al. 

(2008)) or by minimizing the information criteria (Edwards et al. (2010)). Modularity 

is identified as the block diagonal approximation of the adjacent matrix (Figure 3a). 

Because of the high dimensionality of microarray data compared with the smaller 

sample size, it is important to control the signal-to-noise ratio. Instead of estimating 

the interaction among all the genes in a genome, we focused on a maximal connected 

subgraph that includes either the target phenotypes or the core pathway (Figure 3b). 

Additional information, such as the chronological order of temporal variation and 

transcription factor binding sites from public databases, is used as a constraint on the 

direction of the graph. The maximal connected subgraph that is obtained can quantify 

the biological mechanism that generates the diversity of the target phenotypes. 

Assuming a directed acyclic graph as a first approximation, the likelihood of the 

expression profile  Vvv :X  given the graph structure  EV ,  is:  
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   (a) (b) 

  

Figure 3 Schematic diagram of an adjacent matrix that describes a graph. The 

brightness represents the intensity of the edges. (a) Nodes are re-ordered to 

extract the modularity. (b) Information-based maximal connected subgraph 

including the core set (red). 
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where  vpa  is the set of v ’s parental nodes. Starting with the core subgraph, we 

expand the graph as far as the additional edges that have significant mutual 

information. We developed a genetic algorithm with the fitness measure of AIC 

(Akaike (1974)) to construct the maximal connected subgraph. This subgraph consists 

of moving an edge (mutation), adding an edge to a terminal node (insertion), removing 

an edge (deletion), and crossover of edges among a parent graphs. 

 

5. Conclusions 

Modern societies are impacting on the ecosystems. The strong selection pressures that 

this impact produces give rise to adaptive mutations that are fixed promptly to a 

population. Technological innovations for measuring biological phenomena make it 

possible to quantify the hidden molecular mechanisms of the selection pressures and 

the resultant adaptive evolution. Our spatiotemporal statistical models integrate the 

growing knowledge of the biological sciences and the information that is contained in 

biological databases. These models may serve as tools to measure the effects of 

selection on protein sequences and structure and on the physiological systems that 

they control, which will help in understanding the mechanisms that guide adaptive 

evolution. 
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