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Abstract

In the case when a parameter is assumed to be nonnegative or positive valued, a combined

Bayesian-frequentist approach to confidence intervals is adopted, and its comparison with or-

dinary and Bayesian ones are done in normal cases. In the interval estimation problem on the

difference between two means in exponential and normal cases, a systematic method of the con-

struction of a confidence interval is proposed, and its application to the Behrens-Fisher type

problem is given. Next, we consider a family of distributions for which the second order Bhat-

tacharyya bound becomes sharp, and a necessary and sufficient condition for the second order

one to be sharp is given for a family of linear combinations of distributions which belong to the

exponential family. From the Bayesian viewpoint, we construct an estimator which minimizes

locally the variance of any estimator satisfying weaker conditions than the unbiasedness from

which an information inequality is derived.

Key Words: Confidence intervals, Combined Bayesian-frequentist approach, Behrens-Fisher type

problem, Bhattacharyya bound

1. Introduction

If we adopt the non-Bayesian standpoint, interval estimation procedure is usually formalized

as a procedure with a fixed confidence coefficient covering the true value of the parameter with

probability of preassigned value. Such a procedure is mathematically obtained from a class of

test procedures.

In the case when a parameter is assumed to be nonnegative or positive-valued, we consider

an interval estimation problem on an unknown parameter based on the observations including

errors. On such a problem, various methods to construct confidence intervals are proposed by

many physicists and others (see, e.g. Feldman and Cousins (1998) and Mandelkern (2002)). In

such cases, a combined Bayesian-frequentist approach to confidence intervals are constructed,

and its comparison with ordinary and Bayesian confidence intervals are done in normal cases

(Akahira et al. (2005)).

In the interval estimation problem on the difference between two means in exponential and

normal cases, the possibility of extending the definition of confidence intervals is discussed by

Weerahandi (1995) and others. In such a problem, a systematic method of the construction of a

confidence interval is proposed, and its application to the Behrens-Fisher type problem is given

(Akahira (2002)).

There are various information inequalities in statistical estimation. For example, the Cramér-

Rao inequality, the Bhattacharyya one, etc. are well known as the fact that the variance of all

unbiased estimators can not be smaller than the lower bound under suitable regularity conditions
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(see, e.g. Zacks (1971)). We consider a family of distributions for which the second order

Bhattacharyya bound becomes sharp, and a necessary and sufficient condition for the second

order one to be sharp is given for a family of linear combinations of distributions which belong

to the exponential family (Tanaka and Akahira (2003)).

From the Bayesian viewpoint, we consider the information inequality applicable to the non-

regular case when the regularity conditions do not necessarily hold, and construct an estimator

which minimizes locally the variance of any estimator satisfying weaker conditions than the

unbiasedness from which an information inequality is derived (Akahira and Ohyauchi (2007)).

2. Ordinary, likelihood ratio (LR), Bayesian and combined Bayesian-frequentist

confidence intervals

In this section we discuss ordinary, LR and Bayesian confidence intervals, adopt the Bayesian-

frequentist confidence interval and can compare it with others, according to Akahira et.al (2005).

Suppose that X1, · · · , Xn are i.i.d. random variables with the normal distribution N(µ, σ2
0),

where µ > 0 and σ2
0 is known. Since the pivotal quantity T (X̄, µ) :=

√
n(X̄−µ)/σ0 is distributed

according to N(0, 1), it follows that the interval

I(X̄) :=

[
max

{
0, X̄ − uα/2

σ0√
n

}
, max

{
0, X̄ + uα/2

σ0√
n

}]
is the ordinary confidence interval (c.i.) for µ of confidence coefficient (c.c.) 1 − α, where

X̄ := (1/n)
∑n

i=1Xi and uα/2 is the upper 100(α/2) percentile. Note that, for X̄ ≤ −1, the c.i.

I(X̄) is degenerate in the case of 68.27% c.c., hence there is still room for improvement.

In order to improve the above, Feldman and Cousins (1998) consider the c.i. based on the

acceptance region of the LR test as follows. Suppose that X1, · · · , Xn are i.i.d. random variables

with the normal distribution N(µ, 1), where µ > 0. Since the likelihood function L of µ, given

X̄ = x̄ := (1/n)
∑n

i=1 xi, is

L(µ|x̄) = (2π)−n/2 exp

[
−1

2

{
n∑

i=1

(xi − x̄)2 + n(x̄− µ)2

}]

for µ > 0, it follows that the maximum likelihood estimator (MLE) is given by µ̂ML :=

max{X̄, 0}. Then the LR is

Rµ(X̄) :=
L(µ|x̄)

L(µ̂ML|x̄)
=


exp

{
−n

2 (x̄− µ)2
}

for x̄ ≥ 0,

exp
{
n
(
µx̄− µ2

2

)}
for x̄ < 0.

If we can obtain a(µ) and b(µ) such that R(a(µ)) = R(b(µ)) and 1 − α = Φ(
√
n(b(µ) − µ)) −

Φ(
√
n(a(µ)− µ)), then the interval [a(µ), b(µ)] is an acceptance interval, where Φ is the cumu-

lative distribution function (c.d.f.) of N(0, 1). If S(X̄) := {µ|X̄ ∈ (a(µ), b(µ))} is an interval,

then it is the LR c.i. for µ of c.c. 1− α.

Suppose that X1, · · · , Xn are i.i.d. random variables with the normal distribution N(µ, 1),

where µ > 0. Let π(µ) be the improper prior distribution π(µ) = 1 for µ > 0; = 0 for µ ≤ 0. Since

the posterior density of µ given X̄ = x̄ is f(µ|x̄) = [
√
n exp{−(n/2)(µ − x̄)2}]/{

√
2πΦ(

√
nx̄)},
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it follows that the interval [max{X̄ − d, 0}, X̄ + d] is the Bayesian c.i. for µ of c.c. 1− α, where

d =


1√
n
Φ−1

(
1− αΦ(

√
nX̄)

)
for X̄ ≤ x0,

1√
n
Φ−1

(
1
2 + 1

2(1− α)Φ(
√
nX̄)

)
for X̄ > x0

with x0 = (1/
√
n)Φ−1(1/(1 + α)) (see Mandelkern (2002)).

Under the same setup as the above, we construct confidence intervals for µ by the combined

Bayesian-frequentist approach. We consider the problem of testing hypothesis H: µ = µ0(> 0)

against K: µ ∼ π(µ), i.e. µ is distributed as the same improper prior as the above. Then the ac-

ceptance region of the most powerful (MP) test is of the form T (X̄, µ0) := Φ(
√
nX̄)/{

√
nϕ(

√
n(X̄

−µ0))} ≤ λ, where ϕ is a density of N(0, 1), and, for a given α (0 < α < 1), λ is determined by

α =

∫
{y|Φ(

√
n(y+µ0))/(

√
nϕ(

√
ny))>λ}

√
nϕ(

√
nu)du.

Let y(µ0) and ȳ(µ0) be solutions of the equation Φ(
√
n(y + µ0))/{

√
nϕ(

√
ny)} = λ. Putting

z̄ =
√
nȳ, z =

√
ny and m :=

√
nµ0, we have the acceptance region [(z+m)/

√
n, (z̄+m)/

√
n],

hence we construct a confidence interval by the combined Bayesian-frequentist approach.

Next, as a proper prior distribution, we consider the exponential distribution with the density

πθ(µ) = (1/θ)e−µ/θ for µ > 0; = 0 for µ ≤ 0, where θ > 0. Note that the proper prior πθ(µ)

converges to the improper uniform prior of type π(µ) as n → ∞ in the sense that θπθ(µ) → 1

as θ → ∞. In a similar way to the above, it is shown that the acceptance region of the MP test

is of the form

T (X̄, µ0) :=
1

θ
Φ

(√
nX̄ − 1√

nθ

)
exp

{
−n

2

(
2X̄

nθ
− 1

n2θ2

)} /
{
√
nϕ(

√
n(X̄ − µ0))} ≤ λ.

Here, for given α (0 < α < 1), λ is determined by

α =

∫
{x̄|T (x̄,µ0)>λ}

√
n

2π
exp

{
−n

2
(x̄− µ0)

2
}
dx̄.

Letting t1(µ0) and t2(µ0) (t1(µ0) < t2(µ0)) be solutions of the equation T (x̄, µ0) = λ, we have

the acceptance region [t1(µ0), t2(µ0)], hence we conctruct a confidence interval by the Bayesian-

frequentist approach.

We can numerically compare ordinary, LR, Bayesian and combined Bayesian confidence limits.

3. Confidence intervals for the difference of means

In this section, we propose a systematic method of the construction of a confidence interval for

the difference between two means in exponential and gamma cases, and apply a similar method

to the Behrens-Fisher type problem, according to Akahira (2002). Suppose that X1, · · · , Xn

are i.i.d. random variables according to the exponential distribution Exp(θ1) with a density

f(x, θ1) = (1/θ1)e
−x/θ1 for x ≥ 0; = 0 for x < 0, where θ1 > 0, and that Y1, · · · , Yn are

i.i.d. random variables according to the exponential distribution Exp(θ2), where θ1 and θ2 are

unknown. We also assume that X1, · · · , Xn, Y1, · · · , Yn are independent. Let Zx :=
∑n

i=1Xi

and Zy :=
∑n

i=1 Yi. Then Zx and Zy are independently distributed as the gamma distributions
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G(n, θ1) and G(n, θ2) with densities f(z, θj) = θ−n
j {Γ(n)}−1zn−1e−z/θj for z ≥ 0; = 0 for z < 0,

for j = 1, 2, respectively, where θj > 0 (j = 1, 2) and n > 0. For any α (0 < α < 1), let

[b(Zx, Zy), a(Zx, Zy)] be a confidence interval for n(θ1 − θ2) of c.c. 1− α, i.e.

Pθ1,θ2 {b(Zx, Zy) ≤ n(θ1 − θ2) ≤ a(Zx, Zy)} ≥ 1− α (1)

for all θ1 and θ2. Here, in order that the confidence interval bound on (Zx, Zy) coincides with

that based on (Zy, Zx), it is necessary that

b(Zx, Zy) = −a(Zy, Zx) a.e. (2)

So, we assume that (2) holds. Let Tx := Zx/θ1 and Ty := Zy/θ2. Then Tx and Ty are i.i.d.

according to the gamma distribution G(n, 1). From (1) and (2) we have

Pθ1,θ2 {a(θ1Tx, θ2Ty) < n(θ1 − θ2)}+ Pθ1,θ2 {a(θ2Ty, θ1Tx) < n(θ2 − θ1)} ≤ α. (3)

Further we assume that a(z1, z2) = z1ã(z1/(z1 + z2)) for almost all z1 > 0 and z2 > 0, where

ã(·) is a positive-valued function defined on the interval (0, 1). Letting U := Tx/(Tx + Ty) and

V := Tx + Ty, we see that U and V are independent, U is distributed as the beta distribution

Be(n, n) and V is distributed as Be(2n, 1). Let δ := θ2/θ1 and FV be a c.d.f. of V . From (3)

we have the following.

Theorem 1 Under the above conditions, let

p(δ) :=Eδ

[
FV

(
n(1− δ)

Uã(U/(U + δ(1− U)))

)]
χ(0,1](δ)

+ Eδ

[
FV

(
n(1− (1/δ))

Uã((1− (1/δ))/(U + (1/δ)(1− U)))

)]
χ(1,∞)(δ) ≤ α, (4)

where χA(·) denotes the indicator of a set A. If ã(·) satisfies (4) uniformly in δ, then

Pθ1,θ2 {−a(Zy, Zx) ≤ n(θ1 − θ2) ≤ a(Zx, Zy)} ≥ 1− α,

that is, [−a(Zy, Zx), a(Zx, Zy)] is the confidence interval for n(θ1 − θ2) of c.c. 1− α.

Next, suppose thatX1, · · · , Xn are i.i.d. random variables according to the normal distribution

N(µ1, σ
2
1) and Y1, · · · , Yn are random variables with the normal distributionN(µ2, σ

2
2), where µ1,

µ2, σ
2
1 and σ2

2 are unknown. Then we consider the Behrens-Fisher type problem, i.e. a confidence

interval for the difference µ1−µ2 of normal means. Let X̄ := (1/n)
∑n

i=1Xi, Ȳ := (1/n)
∑n

i=1 Yi,

S2
x :=

∑n
i=1(Xi − X̄)2, S2

y :=
∑n

i=1(Yi − Ȳ )2. For any α (0 < α < 1), let

Pθ

{
X̄ − Ȳ + h(S2

x, S
2
y) ≤ µ1 − µ2 ≤ X̄ − Ȳ + g(S2

x, S
2
y)
}
≥ 1− α

for all θ, where θ := (µ1, µ2, σ
2
1, σ

2
2). Here, in order to that the confidence interval based on

(X̄, Ȳ , S2
x, S

2
y) coincides with that based on (Ȳ , X̄, S2

y , S
2
x), it is necessary that h(x, y) = −g(y, x)

a.e. which is assumed here. We also assume that g(c2x, c2y) = cg(x, y) for any positive constant

c. Let Wx := S2
x/σ

2
1 and Wy := S2

y/σ
2
2.

Theorem 2 Assume that the above conditions hold. Let FT be the c.d.f. of the t-distribution

with 2(n−1) degrees of freedom and B be a random variable according to the Beta distribution

Be((n− 1)/2, (n− 1)/2). If g satisfies

r(δ) :=Eδ

[
FT

(√
2(n− 1)g(nδB, n(1− δ)(1−B))

)]
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+ Eδ

[
FT

(√
2(n− 1)g(n(1− δ)(1−B), nδB)

)]
≥ 2− α

uniformly in δ (0 < δ < 1), then
[
X̄ − Ȳ − g(S2

y , S
2
x), X̄ − Ȳ + g(S2

x, S
2
y)
]
is a confidence interval

for µ1 − µ2 of c.c. 1− α.

Remark The coverage probability of the above c.i. is given by

Pθ

{
X̄ − Ȳ − g(S2

y , S
2
x) ≤ µ1 − µ2 ≤ X̄ − Ȳ + g(S2

x, S
2
y)
}
= r(δ)− 1,

where θ = (µ1, µ2, σ
2
1, σ

2
2) and δ = σ2

1/(σ
2
1 + σ2

2).

Assume that g(x, y) =
√
x+ yg̃(x/(x+y)) for almost all x > 0, y > 0, where g̃ is a real-valued

function defined on the interval (0, 1). Here, we consider g̃(z) = a(z − b)2 + c for 0 < z < 1,

where a, b, and c are constants with a ≥ 0 and 0 < b < 1. If we can find the constants a, b, and

c satisfying r(δ) ≥ 2− α uniformly in δ (0 < δ < 1), then, from Theorem 2X̄ − Ȳ −
√

S2
x + S2

y

a

(
S2
y

S2
x + S2

y

− b

)2

+ c

 ,

X̄ − Ȳ +
√

S2
x + S2

y

{
a

(
S2
x

S2
x + S2

y

− b

)2

+ c

}]
is a confidence interval for µ1 − µ2 of c.c. 1− α.

4. Information inequalities

In this section, first, a family of distributions for which an unbiased estimator of a function

g(θ) of a real parameter θ can attain the second order Bhattacharyya lower bound is derived

according to Tanaka and Akahira (2003). Suppose that (X ,B) is a sample space and a family

P = {Pθ : θ ∈ Θ} is dominated with respect to a σ-finite measure µ, where Θ is an open

interval of R1. Denote by f(x, θ) = dPθ/dµ (θ ∈ Θ) a probability density function (p.d.f.). We

consider an estimation problem of the U -estimable function g(θ), i.e. the function g(θ) for which

its unbiased estimator with a finite variance exists, based on a sample X. Here, we assume the

following conditions (A1) to (A4).

(A1) For almost all x[µ], there exist (∂i/∂θi)f(x, θ) for i = 1, · · · , k.
(A2) For each i = 1, · · · , k, there exist B-measurable functions Mi(x) > 0 such that |(∂i/∂θi)

f(x, θ)| ≤ Mi(x) for all θ ∈ Θ, and
∫
Mi(x)dµ(x) < ∞.

(A3)
∫
|((∂i/∂θi)f(x, θ)(∂j/∂θj)f(x, θ))/f(x, θ)|dµ(x) < ∞ for i, j = 1, · · · , k and for all θ ∈ Θ.

(A4) For almost all x[µ] and for all θ ∈ Θ, f(x, θ) > 0.

Theorem 3 (Bhattacharyya (1946), Zacks (1971)). Suppose that the conditions (A1) to (A4)

hold. Assume that g(θ) is a U -estimable function which is k-times differentiable over Θ. Let

g(θ) = t(g(1)(θ), · · · , g(k)(θ)), where g(i)(θ) is the i-th order derivative of g(θ). Let ĝ(X) be an

unbiased estimator of g(θ) having a finite variance, and assume that, for i = 1, · · · , k, there exists
a function Ni(x) such that |ĝ(x)(∂i/∂θi)f(x, θ)| ≤ Ni(x) for all θ ∈ Θ, and

∫
Ni(x)dµ(x) <

∞. Furthermore, let I(θ) be a k × k non-negative definite matrix with elements Iij(θ) =

Eθ[{∂if(X, θ)/∂θi}{∂jf(X, θ)/∂θj}/{f(X, θ)}2], (i, j = 1, · · · , k). Then, if I(θ) is non-singular
over Θ,

Vθ(ĝ(X)) ≥ tg(θ)I(θ)−1g(θ) =: Bk(θ). (5)
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And the equality holds in (5) if and only if

ĝ(x)− g(θ) =

k∑
i=1

ai(θ)
∂if(x, θ)/∂θi

f(x, θ)
a.a. x[µ] (6)

for all θ ∈ Θ, where t(a1(θ), · · · , ak(θ)) = I(θ)−1t(g(1)(θ), · · · , g(k)(θ)).
Theorem 4 Suppose that the conditions (A1) to (A4) hold. Assume that µ({x ∈ X |ĝ(x) =

r}) = 0 for all r ∈ R1. Let k = 2 and a2(θ) ̸= 0 for all θ ∈ Θ. Then the solution of (6) is

expressed by a linear combination of distributions from the exponential family if and only if the

following (i) and (ii) hold.

(i) There are a function t(x) and constants C0, C1 and C2 such that C2 has the same sign as

a2(θ), and ĝ(x) is of the form ĝ(x) = C2t
2(x) + C1t(x) + C0.

(ii) For C0, C1 and C2 given in (i), g(θ) has the form

g(θ) =
a21(θ)

4a2(θ)
− a1(θ)a

′
2(θ)

2a2(θ)
+

a′1(θ)

2
− a′′2(θ)

4
+

3(a′2(θ))
2

16a2(θ)
+ C0 −

C2
1

4C2
.

Next, according to Akahira and Ohyauchi (2007), we consider the information inequality from

the Bayesian viewpoint. Then it is shown that an estimator minimizing locally the variance

of any estimator with weaker conditions than the unbiasedness is constructed, and also the

lower bound for the variance of estimators can be expressed by the information inequality which

involves the Hammersley-Chapman-Robbins type inequality as its special case.
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Feldman, G. J. and Cousins, R. D. (1998). Unified approach to the classical statistical analysis

of small signals. Physical Review, D57, 3873–3889.

Mandelkern, M. (2002). Setting confidence intervals for bounded parameters. Statistical Science

17, 149–172.

Tanaka, H. and Akahira, M. (2003). On a family of distributions attaining the Bhattacharyya

bound. Ann. Inst. Statist. Math. 55(2), 309–317.

Weerahandi, S. (1995). Exact Statistical Methods for Data Analysis. Springer, New York.

Zacks, S. (1971). The Theory of Statistical Inference. Wiley, New York.

Proceedings 59th ISI World Statistics Congress, 25-30 August 2013, Hong Kong (Session STS002) p.1125


