L^1-Optimal Splines for Outlier Rejection

Masaaki Nagahara*
Kyoto University, Kyoto, Japan nagahara@ieee.org

Clyde F. Martin
Texas Tech University, Texas, USA clude.f.martin@ttu.edu

In this presentation, we consider control theoretic splines with L^1 optimization for rejecting outliers in data. Control theoretic splines are either interpolating or smoothing splines, depending on a cost function with a constraint defined by linear differential equations. Control theoretic splines are effective for Gaussian noise in data since the estimation is based on L^2 optimization. However, in practice, there may be outliers in data, which may occur with vanishingly small probability under the Gaussian assumption of noise, to which L^2-optimized splines may be very sensitive. To achieve robustness against outliers, we propose to use L^1 optimality, which is also used in support vector regression. A numerical example shows the effectiveness of the proposed method.

Key Words: Smoothing splines, control theoretic splines, outlier rejection, L^1 optimization, support vector regression