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Abstract

In many experiments, time series data can be collected from multiple units and multiple time
series segments can be collected from the same unit. This article introduces a mixed effects Cramér
spectral representation which can be used to model the effects of design covariates on the second
order power spectrum while accounting for potential correlations among the time series segments
collected from the same unit. The transfer function is composed of a deterministic component to
account for the population-average effects and a random component to account for the unit-specific
deviations. The resultant log-spectrum has a functional mixed effects representation where both
the fixed effects and random effects are functions in the frequency domain. It is shown that, when
the replicate-specific spectra are smooth, the log-periodograms converge to a functional mixed
effects model. A data driven iterative estimation procedure is offered for the periodic smoothing
spline estimation of the fixed effects, penalized estimation of the functional covariance of the
random effects, and unit-specific random effects prediction via the best linear unbiased predictor.

Keywords: Cramér Representation; Mixed Effects Model; Smoothing Spline; Spectral Analysis;
Replicated Time Series

1 Introduction

In biomedical experiments, it is common to collect time series data from multiple subjects and use the
time series as the basic unit in the analysis to study the effects of design covariates. These studies
can include multiple time series segments collected from the same unit, which can be potentially
correlated. The motivating study considered in this article measures three epochs of heart rate
variability from subjects during three stages of sleep where it is believed that the heart rate variability
spectra are are associated with sleep stage and presence of disease (Malik et al., 1996; Hall et al.,
2004). When the focus of the analysis is on the effects of the design covariates on the first moment,
such data can be modeled by mixed effects models. However, existing methods are preliminary when
the interest is on the second order spectra.

This article introduces a mixed effects Cramér spectral representation to model a collection of time
series by defining the transfer function as the product of a deterministic component and a random
component. Both the deterministic component, which accounts for the population-average effects,
and the random component, which accounts for the unit-specific deviations, are semi-parametrically
indexed by design covariates. The resultant log-spectrum has a functional linear mixed effects repre-
sentation in which both the fixed effects and random effects are functions over the frequency domain.

To fit the mixed effects model for the log-periodograms, we propose an iterative algorithm that
begins with an initial smoothing spline estimator of the log-spectral fixed effects. This initial es-
timator is obtained by approximating the minimizer of a penalized sum-of-squares which ignores
the within-unit log-spectral correlation and can be viewed as an extension of the estimators of Cog-
burn & Davis (1974) and Wahba (1980) to the regression setting. Despite the empirical findings
of Qin & Wang (2008) which show that the negative penalized Whittle-likelihood under the proper
selection of smoothing parameters can produce more efficient spectral estimates than the penalized
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sum-of-squares for a single deterministic spectrum, we base our fixed effects estimator on a penalized
sum-of-squares because of its computational feasibility and transparent form as a multivariate low-
pass filter applied to the ordinary least squares estimates of the log-periodograms at each frequency.

2 Model

2.1 Mixed Effects Cramér Spectral Representation

We introduce the mixed effects Cramér spectral representation for modeling a collection of n =∑N
j=1 nj time series from N independent units where nj time series are observed from the jth unit.

This model consists of a stochastic transfer function that is composed of population fixed effects and
unit-specific random effects. Let Ujk = (ujk1, . . . , ujkP )T ∈ U and Vjk = (vjk1, . . . , vjkQ)T ∈ V be
vectors of covariates for the kth replicate of the jth independent unit which index the fixed effects
and the unit-specific random effects, respectively. These covariates can include continuous covariates
as well as indicator variables for categorical variables. Our motivating study of heart rate variability
that is discussed in greater detail in §4 consists of n = 375 epochs of heart rate variability measured
at nj = 3 different sleep stages from N = 125 independent subjects. In addition to its dependence on
sleep stage, the expected spectrum of heart rate variability is hypothesized to be associated with the
presence of insomnia. The fixed covariates are modeled with P = 6 by indicator variables to indicate
the presence of insomnia and stage of sleep. The covariates of the random effects are modeled with
Q = 2 to capture the variation in the across-the-night average heart rate variability between different
subjects and the correlation in the heart rate variability from the same subject at different stages of
sleep.

The transfer function of the kth replicate of the jth independent unit is decomposed into
A0(ω;Ujk)Aj(ω;Vjk) where A0 is a fixed effects term and Aj is a random effects term. To for-
mally define our model, let the population fixed effects term A0 be a complex valued function over
R × U such that for every Ujk ∈ U , A0(·;Ujk) is Hermitian, square-integrable over [−1/2, 1/2], and
has period 1 as a function of frequency. The unit-specific random terms are defined for j = 1, . . . , N
as the complex valued random functions Aj over R × V such that for every Vjk ∈ V, Aj(·;Vjk)
are Hermitian, square-integrable over [−1/2, 1/2], and have period 1 as trajectories over frequency.
Additionally, Aj and Aj′ for j, j′ 6= 0 are independent and identically distributed conditional on Vjk

when j 6= j′, and it is assumed that supω∈R,Vjk∈V E
{
|Aj(ω;Vjk)|2

}
<∞.

The mixed effects Cramér spectral representation defines the kth replicate time series of the jth
independent unit {Xjkt} for k = 1, . . . , nj and j = 1, . . . , N as:

Xjkt =

∫ 1/2

−1/2
A0(ω;Ujk)Aj(ω;Vjk)e

2πiωtdZjk(ω) (1)

where Zjk are mutually independent identically distributed mean-zero orthogonal increment pro-

cesses over [−1/2, 1/2] that are independent of Aj′ for all j and j′, and E
{
|dZjk(ω)|2

}
= dω. The

time series {Xjkt} exists with probability one, is mean zero second order stationary, and has spec-
tral density |A0(ω;Ujk)|2E

{
|Aj(ω;Vjk)|2

}
. To examine which second order stationary time series

have a (not necessarily unique) mixed effects Cramér spectral representation, note that any second
order stationary time series with a spectral density has a traditional Cramér representation with a
unit-variance orthogonal increment processes and a transfer function that is the square root of its
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spectral density. Since the proposed model allows for Aj(ω;Vjk) = 1 with probability 1 for all ω and
Vjk, any second order stationary time series with a spectral density, such as the popular stationary
autoregressive moving average models, possess a mixed effects Cramér spectral representation. Con-
ditional on Aj , the time series {Xjkt} is also mean zero second order stationary and we define the
replicate-specific spectra as the random functions

fjk(ω;Ujk, Vjk) = |A0(ω;Ujk)|2 |Aj(ω;Vjk)|2. (2)

We focus on inference on the log-spectral scale and without loss of generality assume that the
replicate-specific spectra are parameterized such that E

{
log |Aj(ω;Vjk)|2

}
= 0 for all ω ∈ R and

Vjk ∈ V.

2.2 Semi-Parametric Log-Spectral Model

We will assume semi-parametric models for both the fixed and random components of the transfer
functions. The semi-parametric model of the fixed effects component of the transfer function is
defined for Ujk = (ujk1, . . . , ujkP )T as A0(ω;Ujk) =

∏P
p=1 h

0
p(ω)ujkp where h0p are deterministic

Hermitian functions over R with period 1 that are bounded away from zero. The random component
of the unit-specific transfer functions are defined for Vjk = (vjk1, . . . , vjkQ)T ∈ V as Aj(ω;Vjk) =∏Q
q=1 hjq(ω)vjkq where hjq are mutually independent Hermitian random functions with period 1 that

are bounded away from zero, hjq and hj′q are independent and identically distributed for j 6= j′,

and E
{
|hjq(ω)|4

}
< ∞. Define the functions βp(ω) = log |h0p(ω)|2 and αjq(ω) = log |hjq(ω)|2

as well as the P-dimensional vectors β(ω) = {β1(ω), . . . , βP (ω)}T and the Q-dimensional vectors
αj(ω) = {αj1(ω), . . . , αjQ(ω)}T . This transfer function model induces the semi-parametric mixed
effects model on the replicate-specific log-spectra

log fjk(ω;Ujk, Vjk) = UTjkβ(ω) + V T
jkαj(ω). (3)

If we define the covariance function for the qth log-spectral random effect as Γq(ω, ν) = E {αjq(ω)αjq(ν)}
and let Γ(ω, ν) = diag {Γ1(ω, ν), . . . ,ΓQ(ω, ν)} be the diagonal Q × Q matrix of these covariances,
the first two central moments of log-spectra are

E {log fjk(ω;Ujk, Vjk)} = UTjkβ(ω)

cov {log fjk(ω;Ujk, Vjk), log fj`(ν;Uj`, Vj`)} = V T
jkΓ(ω, ν)Vj`.

3 Estimation

3.1 Log-Periodogram Mixed Effects Model

Let T = 2L for a positive integer L and assume that we observe epochs of length T of a collection
of time series {Xjk1, . . . , XjkT } that follow a mixed effects Cramér spectral representation for k =
1, . . . , nj and j = 1, . . . , N . Let ω` = `/T for ` = (1 − L), . . . , L be the Fourier frequencies and

define the finite Fourier transforms as djk` = T−1/2
∑T

t=1Xjkte
−2πiω`t and subsequent periodograms

as Ijk` = |djk`|2. Theorem 1 establishes asymptotic properties of the log-periodograms when the
replicate-specific spectra are in W 2

2,per and allows the log-periodograms to be approximated by a
functional mixed effects model.
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Letting yjk` = log Ijk` + γ`, the log-periodograms approximately follow the functional mixed
effects model

yjk` ≈ UTjkβ(ω`) + V T
jkαj(ω`) + εjk` (4)

where εjk` are mean-zero independent random variables for ` = 0, . . . , L with var (εjk`) = σ2` . The
second part of Theorem 1 provides the uniform convergence of the first two moments of this smooth
signal plus noise model and subsequently allows functional mixed effects modeling techniques to be
applied to (4) to obtain consistent estimates of βp, Γq and αjq.

3.2 Fixed Effects

The proposed estimator of β is based on minimizing the penalized sums-of-squares

1

nT

N∑
j=1

nj∑
k=1

L∑
`=1−L

{
yjk` − UTjkβ(ω`)

}2
+

P∑
p=1

λp

∫ 1/2

−1/2
β′′p (ω)2 dω (5)

over ⊗PW 2
2,per given smoothing parameters λp ≥ 0. By the representer lemma for smoothing splines,

if Uj are the nj × P matrices with kpth elements ujkp and U = (UT1 , . . . , U
T
N )T is full rank, then a

unique solution exists. To find this solution, let Yj` = (yj1`, . . . , yjnj`)
T , Y` = (Y T

1` , . . . , Y
T
N`)

T , and

Y =
(
Y T
1−L, . . . , Y

T
L

)T
. The estimate β(ω) with

β̂(ω) =
1

T

L∑
`=1−L

L∑
m=1−L

{
UTU + n(2πm)4Λ

}−1
UTY`e

2πim(ω−ω`). (6)

When n = 1 and P = 1, the proposed estimator is equivalent to the estimator proposed by Wahba
(1980) and is subsequently a generalization of this well studied estimator to the regression setting
with multiple log-spectra. Using simple algebra to express{

UTU + n(2πm)4Λ
}−1

UTY` =
{
IP + n(2πm)4(UTU)−1Λ

}−1 {
(UTU)−1UTY`

}
illuminates that the proposed estimate is a type of multivariate low-pass filter applied to the ordinary
least squares estimates at each frequency. It is dependent on the smoothing parameters such that as
maxλj → 0, β̂ approaches a spline interpolation of the ordinary least squares estimates. Theorem 2
establishes the optimal decay of λj if both the number of independent units and the number of time

points is large as well as the point-wise consistency of β̂.

3.3 Functional Covariance

We propose an estimate of the functional covariance of the log-spectral random effects conditional on
the estimate β̂ through the outer product of smoothed unit-specific quantities. Define the residuals
y∗jk` = yjk` − UTjkβ̂(ω`) and Y ∗j` = (y∗j1`, . . . , y

∗
jnj`

)T . We propose to estimate Γq(ω, ν) for ω, ν ∈ R as

Γ̂q(ω, ν) = N−1
N∑
j=1

α̃jq(ω)α̃jq(ν) (7)
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where α̃j = (α̃j1, . . . , α̃jQ)T is based on minimizing

1

njT

nj∑
k=1

L∑
`=1−L

{
y∗jk` − V T

jkαj(ω`)
}2

+

Q∑
q=1

θq

∫ 1/2

−1/2
α′′jq(ω)2 dω

over ⊗QW 2
2,per given the smoothing parameters θq ≥ 0. Approximating the solution to the penalized

sums-of-squares, we estimate Γ̂q(ω, ν) as the qth diagonal element of the Q×Q matrix

1

NT 2

N∑
j=1

L∑
`,m,r,s=1−L

{
V T
j Vj + nj(2πm)4Θ

}−1
V T
j Y

∗
j`Y
∗T
jr Vj

×
{
V T
j Vj + nj(2πs)

4Θ
}−1

e2πim(ω−ω`)+2πis(ν−ωr)

where Vj is the nj × Q matrix with kqth element vjkq and Θ = diag(θ1, . . . , θQ). Theorem 3 finds
the optimal decay of the smoothing parameters θq for the estimation of Γq as well as the point-wise
mean-squared consistency of the estimate of Γq.

4 Analysis of Heart Rate Variability

Heart rate variability is the measure of variability in the elapsed time between consecutive heart
beats. The spectral analysis of heart rate variability is important in the study of various physiological
outcomes and provides indirect measures of autonomic nervous system activity (Malik et al., 1996).
Researchers have devised methods to assess heart rate variability continuously and non-invasively
throughout sleep (Hall et al., 2004, 2007). In the present study, sleep and heart rate variability were
concurrently assessed in a sample of N=125 men and women between the ages of 60 and 89 years of
age. Data were collected in participants’ homes to enhance the ecological validity of study measures.
Of these participants, 76 were poor sleepers due to insomnia while 49 were poor sleepers due to
the emotional strain of caregiving for a spouse with advanced dementia. The present analysis uses
epochs of heart rate variability tachograms, or the series of the elapsed time between consecutive
heart beats indexed by beat number, of the first 500 continuous heart beats during each of the
first three periods of non-rapid eye movement (NREM). The data for each subject are comprised of
patient type (either insomnia or caregiver) and three time series (heart rate variability for the first
three periods of NREM).

The goal of our analysis is to quantify the expected differences in heart rate variability spectra
between individuals with insomnia and caregivers during different NREM periods. We model the
heart rate variability log-spectrum for the j = 1, . . . , 129 subjects at the first k = 1, 2, 3 periods of
NREM as log fjk(ω;Ujk, Vjk) = UTjkβ(ω) + V T

jkαj(ω) where UTj1
UTj2
UTj3

 =

 1 0 0 Sj 0 0
0 1 0 0 Sj 0
0 0 1 0 0 Sj

 ,
 V T

j1

V T
j2

V T
j3

 =

 1 -1
1 0
1 1


and Sj is the indicator variable for the jth subject being an insomniac. The fixed effects β1, β2, β3
are the mean log-spectrum at NREM periods 1, 2, and 3 respectively for caregivers, β4, β5, β6 are
the differences in the mean log-spectra between caregivers and individuals with insomnia at NREM
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periods 1, 2, and 3 respectively, Γ1 accounts for the variability in the across-the-night average log-
spectra among subjects, and Γ2 is the covariance kernel among adjacent NREM periods within a
subject.

5 Discussion

The model and estimation procedure introduced in this article offer tools for analyzing collections
of time series from designed studies and can be extended in several directions to encompass other
popular settings. We have focused on estimation based on the first two moments of the log-spectra.
It is possible to extend our procedure to Whittle-likelihood based inference. In addition, many
applications involve the analysis of replicated time series that are not necessarily stationary. The
incorporation of the tensor-product design employed by Guo et al. (2003) into our proposed model
to allow for the spectral analysis of replicated non-stationary time series could provide a useful tool
for the analysis of replicated locally stationary time series. We hypothesize that the computational
burden associated with Whittle-likelihood based inference and the tensor-product analysis of locally
stationary time series for a collection of time series could make these two extensions non-trivial tasks.
Although the mixed effects Cramér spectral representation holds when unit-specific spectra are not
necessarily smooth, our estimation procedure is formulated for applications such as the analysis of
heart rate variability where a global smoothness criterion is appropriate.
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