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Abstract 
 
High throughput sequencing technologies are supplanting microarrays as the preferred 
technology for detecting and quantifying differential gene expression. The raw data 
produced by the a technique known as RNA-sequencing (RNA-seq), consists of 
integer counts of reverse transcribed cDNA fragment reads mapped onto each gene or 
transcript isoform in a reference genome or transcriptome. Many software packages 
exist for analysing RNA-seq datasets consisting of tables of mapped read counts from 
biological or technical replicate experiments under two or more conditions, the 
purpose being to detect which genes are differentially expressed between conditions.  
Two state-of-the-art packages, DESeq and edgeR, are based on a negative binomial 
model of read counts.  Our tests with simulated data constructed according to the 
statistical model assumed by these packages reveal that both packages generate a 
non-uniform p-value spectrum from null-hypothesis data. We demonstrate how 
specific knowledge of the non-uniformity can be exploited to develop a graphical 
technique based on the Storey-Tibshirani method for improving estimates of p-values 
and false discovery rates in databases where differential expression is present. We 
have developed an add-on package for DESeq and edgeR, called Polyfit, which 
implements this method, and evaluate its performance against DESeq, edgeR and 
another recently introduced package, PoissonSeq, using simulated data.   
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1. Introduction 
 
Transcriptome-wide expression profiling is accomplished from high throughput 
sequencing (HTS) technology via the technique of RNA-sequencing (RNA-seq) in 
which RNA transcripts sampled from a biological source are fragmented to convenient 
lengths, reverse transcribed to cDNA, amplified, sequenced and the reads identified by 
mapping to a reference genome. A summary of the RNA-seq procedure is given in the 
introductory material to Li et al. (2012). A number of software packages have been 
developed specifically for the purpose of analysing tables of read counts from 
biological replicate sequencing runs under two or more conditions with the specific 
purpose of detecting which genes are differentially expressed (DE) and quantifying 
the degree of differential expression via p-values and estimated false discovery rates 
(FDRs). An extensive comparison of the performance of eleven such packages has 
recently been published by Soneson and Delorenzi (2013).   

HTS count data is well represented as over-dispersed Poisson data, as the 
Poisson shot noise inherent in sampling a relatively small number of reads from a 
large number of molecules in solution is compounded with biological variability and 
with technical variability due to sample preparation. Two of the most sophisticated 
packages for detecting differential expression from RNA-seq data, namely edgeR 
(Robinson et al., 2010) and DESeq (Anders and Huber, 2010), model the 
over-dispersed Poisson count data using a negative binomial (NB) model. The read 
counts for the biological replicates for each gene in each condition are fitted to a NB 
distribution via an algorithm that involves borrowing information from count data for 



the complete set of genes. A transcript abundance for each gene is then inferred from 
the gene’s NB mean. The null hypothesis corresponding to no differential expression 
is that the transcript abundance is the same in both conditions. Both packages provide 
p-values from which estimates of FDRs are extracted using the Benjamini-Hochberg 
algorithm (Benjamini and Hochberg, 1995). For concise summaries of differences 
between edgeR and DESeq see Robles et al. (2012) and the supplementary material to 
Soneson and Delorenzi (2013). 

A recent addition by Li et al. (2012) to the suite of available packages for 
analysing RNA-seq data is PoissonSeq. This method power-transforms over-dispersed 
count data to (non-integer valued) quasi-Poisson data and normalises by iteratively 
determining a subset of genes satisfying a null-hypothesis Poisson model. This subset 
is typically chosen to be half the total number of genes and is interpreted as falling 
within the fraction ! 0 of non-DE genes. An unsigned score statistic, which has a 
"2-distribution under the null hypothesis for the Poisson log-linear model described in 
Section 3 of Li et al. (2012), is used to detect differential expression. The FDR is 
estimated using a novel modified plug-in estimate in which the permutation 
distribution of the score statistic is calculated only from genes which are likely to be 
null. Using evidence of experiments with synthetic NB data, Li et al. claim that their 
method achieves considerably improved estimates of the FDR compared with edgeR. 

This paper introduces an extension to the packages edgeR and DESeq which we 
call Polyfit. The aim of Polyfit is to improve calculations of p-values and estimates of 
the FDR by replacing the Benjamini-Hochberg procedure with an adapted version of a 
procedure for multiple hypothesis testing proposed by Storey and Tibshirani (2003). 
The secondary purpose of this paper is to perform a comparative analysis of the five 
packages PoissonSeq, edgeR, DESeq, and our extended versions Polyfit-edgeR and 
Polyfit-DESeq using synthetic data.  
 
2. Methods  
 
The packages edgeR and DESeq are state-of-the-art, but nevertheless are subject to 
shortcomings resulting from the computational complexity of estimating the 
parameters of the assumed NB distribution for each gene. To illustrate this, Fig. 1(a) 
shows the nominal p-value spectrum obtained from the DESeq algorithm for 
simulated data of 4 replicates of control and 4 replicates of treatment cases for 46,446 
genes created with a range of means and over-dispersions typical of that found in the 
human transcriptome. In these data, the mean expression of 15% of the treatment 
genes have been up- or down-regulated by at least a factor of 2 relative to the control 
data. For the purposes of the current illustration, and as part of the implementation of 
our method, we have made changes to the original DESeq and edgeR algorithms to 
smooth out an artefact spike at p = 1 resulting from estimating p-values from a 
discrete distribution. Nevertheless, we observe that even with this spike redistributed 
the p-value spectrum for the 85% of genes which are unregulated (shaded) is far from 
uniform. The effect is more pronounced for DESeq than for edgeR. Using a false 
positive rate to control for differential expression with these calculated p-values for 
the null-hypothesis genes would lead to an overly conservative measure of 
significance and hence loss of power to detect differential expression.   

DESeq and edgeR correct for multiple hypothesis testing via the 
Benjamini-Hochberg procedure. For each gene an ‘adjusted p-value’ (also known as 
q-value) is calculated to enable the expected false discovery rate (FDR) (i.e. the 
proportion of positives returned which are false positives) to be used to control for 
differential expression. Herein we propose an alternate method for estimating p-values 
and q-values by adapting an alternate procedure due to Storey and Tibshirani (2003). 
This is a graphical procedure for multiple hypothesis testing in which the proportion 
of cases satisfying the null hypothesis is estimated from the behaviour of the p-value 
spectrum as p ! 1, enabling estimates of q -values to be obtained graphically at any  
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Figure 1: (a) Nominal p-value spectrum calculated by DESeq for synthetic data 
RNA-seq with 15% genes up- or down-regulated. The shaded histogram is the 85% of 
transcripts which are unregulated. (b) Schematic representation of the 
Storey-Tibshirani procedure for correcting for multiple hypothesis testing, assuming 
correctly calculated p-values. (c) Schematic representation of the Storey-Tibshirani 
procedure adapted to RNA-seq data. By ‘nominal p-values’ we mean p-values as 
calculated by a computer package relying on a NB model using estimated parameters, 
such as DESeq or edgeR. (TP = true positives, FP = false positives, FN = false 
negatives and TN = true negatives at a specified significance point #.) 
 
p-value # as the ratio FP/(TP + FP) (see Fig. 1(b)). The procedure implicitly assumes 
p-values are calculated accurately and have a uniform distribution under the null 
hypothesis. 

The adaptation of the Storey-Tibshirani procedure to RNA-seq data is illustrated 
in Fig. 1(c): A quadratic function is fitted to the right hand part of the nominal p-value 
spectrum supplied by the existing software and extrapolated to the complete interval 
[0, 1]. The area under the extrapolated curve is assumed to approximate the histogram 
of nominal p-values for the non-DE genes. Corrected p-values and q-values are then 
estimated at each nominal p-value # from the formulae 
 

pcorrected = FP/(FP + TN),   qcorrected = FP/( FP + TP). 
 
The method provides an estimate of the proportion ! 0 of genes satisfying the null hy- 
pothesis of no differential expression as the shaded area divided by the total number of 
genes, and hence also an estimate of the fraction 1 " ! 0 of DE genes. We refer to our 
adapted Storey-Tibshirani procedure, which we have implemented as a set of R 
functions, as ‘Polyfit’ (for polynomial fit).  A detailed description of the algorithm 
and the source code will be published elsewhere (Burden et al., 2013).    
 
3. Results 
 
We tested the relative performance of PoissonSeq, the original DESeq and edgeR, and 
our extensions Polyfit-DESeq and Polyfit-edgeR using synthetic datasets. Each dataset 
consists of NB distributed counts simulating n replicates control data and n replicates 
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Figure 2: True (solid curves) and estimated (broken curves) FDRs for n = 4 control 
and 4 treatment replicates of synthetic data with 5, 10 and 15% DE genes. Five differ- 
ent methods are used for calculating p-values and q-values: PoissonSeq (Li et al., 
2012), DESeq (Anders and Huber, 2010), edgeR (Robinson et al., 2010), and our 
proposed variants Polyfit-DESeq and Polyfit-edgeR (labelled with the extension PF)`. 
The true FDR curves do not differ noticeably on the scale of the plots between DESeq 
and Polyfit-DESeq or between edgeR and Polyfit-edgeR. The right hand plots are an 
expanded view of the subset of genes up to a significance point roughly corresponding 
to the number of truly DE genes. 
 
 



of treatment data in which a specified percentage of genes are DE by at least a factor  
of 2. The calculation was done for n = 2, 4, 6 and 10 simulated biological replicates 
and 1, 5, 10 and 15% of a total of 46,446 genes DE.   

The left-hand plots in Fig. 2 show true and estimated FDRs calculated from 
synthetic data over the complete range of p-values for the case n = 4. The plots 
confirm Li et al.’s (2012) findings that PoissonSeq substantially corrects an 
overestimation of the true FDR by the Benjamini-Hochberg procedure used by edgeR 
and DESeq as the significance point is raised to include a large number of genes called 
as being DE. The plots also show that this shortcoming of edgeR and DESeq is 
rectified by our adapted Storey-Tibshirani procedure, which brings Polyfit-edgeR and 
Polyfit-DESeq into close agreement with PoissonSeq and the true FDR curves. This 
observation holds in general provided at least 5% of the genes in the synthetic data are 
DE (Burden, 2013).   

An issue not examined in the left-hand plots in Fig. 2 or in the simulations of Li 
et al. is the relative performance of different packages and methods for the subset of 
genes called as being most significantly DE. In the right hand plots of Fig. 2 we show 
the portion of the FDR curves up to a significance point roughly corresponding to the 
number of DE genes in each simulation. Out of a total of 46,446 genes, this 
corresponds to ! 2,300, ! 4,600 and ! 7,000 genes for 5, 10 and 15% DE respectively. 
These plots indicate two disadvantages of PoissonSeq, namely that for the genes 
called as being most significantly DE, the true FDR is consistently higher than for the 
remaining four methods, and that the true FDR is under-reported by PoissonSeq. This 
is observed to occur out to a significance point corresponding to half the number of 
truly DE genes in all of our simulations (Burden, 2013), including those shown in the 
right hand plots of Fig. 2. 

The ability of the remaining methods to estimate the FDR for the genes called as 
being most significantly DE varies according to the level of differential expression and 
the number of simulated biological replicates. Observations from FDR plots of our 
complete set of simulations (Burden, 2013) out to a significance point corresponding 
to half the number of truly DE genes are summarised in Fig. 3. At low levels of 
differential expression (up to 5% DE) or small numbers of simulated biological 
replicates (n # 4) all methods under-report the true FDR for the genes covered by Fig. 
3. The Polyfit addition to edgeR and DESeq tends to lower the estimated FDR, thus 
exacerbating this problem.  However, for higher levels of differential expression ($ 
15% DE for edgeR and $ 10% DE for DESeq) and higher numbers of simulated 
biological replicates (n $ 6 for edgeR and n $ 4 for DESeq), DESeq and edgeR 
over-report the FDR over almost the whole range of genes. The Polyfit procedure 
attempts to correct this over-reporting, the effect of which is to give an accurate 
estimate of the true FDR for sufficiently high numbers of biological replicates (n $ 10 
for edgeR or n $ 6 for DESeq). One would in any case recommend higher numbers of 
replicates via multiplexing as simulations with synthetic data demonstrate that this 
leads to considerable gains in power to detect DE (Robles et al., 2012).   

 
4. Conclusions 

 
We have introduced an add-on to the NB-based packages edgeR and DESeq for 
two-class detection of differential expression called Polyfit which achieves two of the 
advantages associated with the recently introduced package PoissonSeq: (1) it 
provides an estimate of the fraction ! 0 of non-DE genes, and (2) it gives an accurate 
estimate of the FDR over most of the range of the p-value spectrum (Fig. 2, left hand 
plots). Of more immediate interest to practising biologists is the software’s 
performance for the genes called as being most significant, that is, the few hundred or 
so genes with the lowest p-values (Fig. 2, right hand plots). Our simulations with 
synthetic data demonstrate that the Polyfit extension to edgeR or DESeq will give an 
accurate estimate of the true FDR over the complete range of significance points,  
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Figure 3: Summary of performance of the packages edgeR, DESeq and their Polyfit 
extensions in estimating the FDR for genes out to a significance point corresponding 
to half the number of truly DE genes. Experiments were done with n = 2,4,6 and 10 
simulated replicates of synthetic data in which 1, 5, 10 and 15% of genes are DE. 
 
 
including the subset of genes called as being most significantly DE, provided the 
number of replicates and percentage of differentially expressed genes is sufficiently 
high (n $ 10 for edgeR or n $ 6 for DESeq). This number of replicates is within the 
capabilities of current sequencing technologies by use of multiplexing in situations 
where budgets are limited.   
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