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Abstract

Genetic association studies in practice often involve multiple traits resulting from a common
disease mechanism, and samples for such studies are often stratified based on some trait out-
comes. In such situations, statistical methods using only one of these traits may be inadequate
and lead to under-powered tests for detecting genetic associations. We propose in this paper
an estimation and testing procedure for evaluating the shared-association of a genetic marker
on the joint distribution of multiple traits of a common disease. Specifically, we assume that
the disease mechanism involves both quantitative and qualitative traits, and our samples could
be stratified based on the qualitative trait. Through a joint likelihood function, we derive a
class of estimators and test statistics for evaluating the shared genetic association on both the
quantitative and qualitative traits. Our simulation study shows that the joint likelihood test
procedure is potentially more powerful than association tests based on separate traits. Applica-
tion of our proposed procedure is demonstrated through the rheumatoid arthritis data provided
by the Genetic Analysis Workshop 16 (GAW16).

Keywords: genetic association study, joint regression model, pleiotropic analysis, qualitative
trait, quantitative trait, stratified sample.

1 Introduction

We propose in this paper a joint regression approach to evaluate the genetic associations and

covariate effects on both a quantitative trait and a multinomial qualitative trait. In order to include
combined data from multiple studies, we focus on samples stratified based on the qualitative trait

with the quantitative trait observed on all or some of the strata. The quantitative trait may not be
measured on some strata, partly due to the practical issues of high cost and low scientific values of

having its observations on these strata. Our motivating example is the Rheumatoid Arthritis (RA)
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data provided by the Genetic Analysis Workshop 16 (GAW16) (Amos et al., 2009). This case-

control study combines 868 RA positive patients (cases) from the North American Rheumatoid
Arthritis Consortium and 1194 RA negative subjects from the New York Cancer Project (controls)

and contains genotype data of 545,080 SNPs. Since the anti-cyclic citrullinated peptide (anti-CCP)
antibody is a potentially important surrogate marker for diagnosis and prognosis in RA and higher

anti-CCP levels have been linked to increased severity of RA (Huizinga et al., 2005), the GAW16
data contain anti-CCP measurements for the RA positive patients but not for the RA negative
subjects. By treating the anti-CCP value as a quantitative trait and the RA status as a qualitative

trait, our methodology is capable of estimating and testing the associations of SNPs or candidate
genes jointly with these two traits. Numerical studies and detail and extension of our method are

presented in the main paper published (Wu et al. 2013).

2 Data Structure and Joint Regression Models

Let {X, Y, G, Z} be the random variables being considered, where X is a qualitative trait with
values in {0, 1, . . . , K}, Y is a real valued quantitative trait, G is a categorical variable denoting

the value of genetic markers or SNPs, and Z = (Z(1), . . . , Z(D))T is an RD-valued, D ≥ 1, covariate
matrix. Specific choices for coding G depend on whether the biallalic genetic model is recessive

(REC), additive (ADD) or dominant (DOM), and G may involve multiple SNPs or candidate genes.
The outcome stratified sample D based on X is the combination of K + 1 subsamples D0, . . . ,DK

with sample sizes n0, . . . , nK , respectively, and the overall sample size n =
∑K

k=0 nk. When K = 1,

D = {D0,D1} is a case-control study with D1 and D0 being the samples for cases and controls,
respectively. Since D is stratified based on the values of the qualitative trait X , Xi’s are observed

for all the subjects i = 1, . . . , n. Because Y given certain levels of X may not be scientifically
important, Yi may not be measured in some of the subsamples. We assume that there is a constant

0 ≤ K0 ≤ K, such that Dk = {Xi = k, Gi, Zi; i =
∑k−1

l=0 nl + 1, . . . ,
∑k

l=0 nl} if 0 ≤ k < K0, and
Dk = {Xi = k, Yi, Gi, Zi; i =

∑k−1
l=0 nl + 1, . . . ,

∑k
l=0 nl} if K0 ≤ k ≤ K.

Since the observations in D are stratified based on the values of Xi, a joint regression model
for (Xi, Yi)

T with covariates {Gi, Zi} can be constructed by modeling the conditional probability

P (Xi = k|Gi, Zi), and, for each Xi = k, the conditional mean of Yi given {Gi, Zi}. If a linear
model for Yi is used, a linear joint model for D is






g
[
P (Xi = k|Gi, Zi)

]
= β

(k)
0 + (β

(k)
1 )T Gi + (β

(k)
2 )T

Zi, for 1 ≤ k ≤ K,

P (Xi = 0|Gi, Zi) = 1 −
∑K

k=1 P (Xi = k|Gi, Zi),

Yi|Xi=k = α
(k)
0 + (α

(k)
1 )T

Gi + (α
(k)
2 )T

Zi + ε
(k)
i , K0 ≤ k ≤ K,

(1)

where g(·) is a known link function, β
(k)
1 and β

(k)
2 describe the genetic association of Gi and the

covariate effect of Zi on the probability of Xi = k, α
(k)
1 and α

(k)
2 describe the additional genetic

association of Gi and the covariate effect of Zi on the quantitative trait Yi within each given level

of Xi = k, and ε
(k)
i are the mean zero random errors with variances σ2

k. Since Yi is not observed
when Xi = k with 0 ≤ k < K0, the effects of {Gi, Zi} on Yi are not identifiable if there are no
further assumptions on Yi given Xi = k and 0 ≤ k < K0.

An important assumption for the models (1) is that the disease status is first categorized by
the qualitative trait X , then, within certain levels of X , the disease severity is further measured
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by the quantitative trait Y . The parameters β
(k)
1 describe the associations of Gi with the disease

categories in the first step, and α
(k)
1 describe the further genetic associations of Gi with the disease

severity within a given disease category. Thus, to evaluate the shared genetic associations of Gi

with both X and Y , we would like to test:
{

H0: β
(k)
1 = 0 for all 1 ≤ k ≤ K, and α

(k)
1 = 0 for all K0 ≤ k ≤ K;

H1: β
(k)
1 6= 0 for some 1 ≤ k ≤ K, or α

(k)
1 6= 0 for some K0 ≤ k ≤ K,

(2)

where 0 denotes the column vector of 0 with the appropriate length. When the observations of Yi

are ignored in (1), (2) reduces to the test: “Hb
0: β

(k)
1 = 0 for all 1 ≤ k ≤ K” versus “Hb

1: β
(k)
1 6= 0

for some 1 ≤ k ≤ K”. If only Yi is used for testing the genetic associations of Gi, we would like to

test: “Ha
0 : α

(k)
1 = 0 for all K0 ≤ k ≤ K” versus “Ha

1 : α
(k)
1 6= 0 for some K0 ≤ k ≤ K” based on

the quantitative trait part of (1). Since the parameters in H0 are subsets of the ones in Hb
0 or Ha

0 ,

the true pleiotropic associations of Gi with the disease, which may be categorized by both disease
categories and disease severity, are more likely to be detected by incorporating the information of
Xi and Yi in the joint models (1). Extensions of (1) to partially linear joint models where the linear

structure assumption is not appropriate is dealt in detail in the main paper (Wu et al. 2013).

3 Likelihood based Estimation and Testing

Let fx(y|g, z) be the conditional density of Y = y given {x, g, z}, π(g, z) the joint density of

{g, z}, and f(y, x|g, z) = fx(y|g, z) P (x|g, z) the conditional density of (Y, X)T given {g, z} in the
population. Following Equation (1.2) of Wu (2000), the joint density of {Yi, Xi, Gi, Zi} for the

observed stratified sample Dk is

f(y, x, g, z) =
fx(y|g, z) P (x|g, z)π(g, z)

Wk
1[x=k], (3)

where Wk = P (X = k) and 1[·] is the indicator function with 1[x=k] = 1 if x = k, and 0 otherwise.
Since {Xi, Gi, Zi} are observed for Xi = k, 0 ≤ k < K0, and {Yi, Xi, Gi, Zi} are observed for

Xi = k, K0 ≤ k ≤ K, we define LX,k,i(Xi, Gi, Zi) = logP (Xi = k|Gi, Zi), and LY,k,i(Yi, Gi, Zi) =
log fk(Yi|Gi, Zi) if K0 ≤ k ≤ K, and 0 if 0 ≤ k < K0. The full log-likelihood function for the

observed data D is

L(D) =
K∑

k=0

[
LX,k(D) + LY,k(D)

]
+

K∑

k=0

LW,k(D), (4)

where, with m−1 = 0, mk = n0 + · · ·+ nk, LW,k(D) =
∑mk

i=mk−1+1 log [π(Gi, Zi)/Wk],

LX,k(D) =
mk∑

i=mk−1+1

LX,k,i(Xi, Gi, Zi) and LY,k(D) =
mk∑

i=mk−1+1

LY,k,i(Yi, Gi, Zi).

We assume throughout that π(·, ·) and Wk do not depend on the model parameters, so that

L(D) of (4) depends on the model through the partial log-likelihood function

LX,Y (D) = LX(D) + LY (D), (5)

where LX(D) =
∑K

k=0 LX,k(D), LY (D) =
∑K

k=0 LY,k(D), and the estimation and inference can be

acheived by maximizing LX,Y (D) over the parameters.
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Let θ = (αT , βT , σT )T be the vector of parameters of (1) within the parameter space Θ. Under

the assumption that π(·, ·) and Wk do not depend on θ ∈ Θ, the maximum likelihood estimator
(MLE) θ̂ = (α̂T , β̂T , σ̂T )T satisfies SX,Y (D; θ̂) = ∂LX,Y (D; θ)/∂θ|

θ=θ̂
= 0, which are equivalent to

SX(D; β̂) =
∂LX(D; β)

∂β

∣∣∣
β=β̂

= 0 and SY (D; α̂, σ̂) =
∂LY (D; α, σ)

∂(αT , σT )T

∣∣∣
α=α̂,σ=σ̂

= 0. (6)

It follows from (6) that θ can be computed by separately maximizing LX(D; β) and LY (D; α, σ)

with respect to β and (αT , σT )T .

Asymptotic properties of θ̂, such as consistency and asymptotically normality, can be developed

using the usual derivations for the MLEs (Serfling, 1980, Section 4.2). If we assume that (a)
nk/n → ck for some constant 0 < ck < 1 and all k = 0, . . . , K, (b) the Fisher information matrix

I(θ) = −E[∂2 log f(Y, X, G, Z|θ)
/

(∂θu ∂θv)] is positive definite with inverse I−1(θ), where θa is the

ath element of θ, and (c) the regularity conditions of MLEs, such as Serfling (1980, Section 4.2, R1-
R3), are satisfied, then θ̂ has approximately the N (θ, n−1I−1(θ)) distribution when n is sufficiently

large. The approximate 100×(1−α)% confidence interval for CT θ is CT θ̂±Z1−α/2n
−1CT I−1(θ̂)C,

where C is a known column vector and Zα is the (100 × α)th quantile of the standard normal
distribution.

Since the genetic associations in (2) are linear hypotheses of the form, H0: ΓT θ = 0 versus H1:

ΓT θ 6= 0, for an appropriate matrix Γ such that ΓT θ = ((α
(K0)
1 )T , . . . , (α

(K)
1 )T , (β

(1)
1 )T , . . . , (β

(K)
1 )T )T ,

we can constuct three test statistics by comparing the log-likelihood functions and the MLEs com-
puted under H0 and H1. Let θ̃ = (α̃T , β̃T , σ̃T )T be the MLE of θ computed by (6) under the null

hypothesis H0, that is, α̃
(k)
1 = α

(k)
1 = 0 for K0 ≤ k ≤ K and β̃

(k)
1 = β

(k)
1 = 0 for 1 ≤ k ≤ K. We

have the following three asymptotically equivalent test statistics:

(a) the likelihod ratio test statistic: LRT (D) = 2[LX,Y (D; θ̂)− LX,Y (D; θ̃)];

(b) the Wald statistic W (D) = n(ΓT θ̂)T [ΓT I−1(θ̂)Γ]−1(ΓT θ̂);

(c) the score statistic: SC(D) = n−1ST
X,Y (D; θ̃)I−1(θ̃)SX,Y (D; θ̃).

Under partially linear joint models, the parameter vector and parameter space are θ∗ =
((α∗)T , βT , σT , µT )T and Θ∗, respectively. When π(·, ·) and Wk do not depend on θ∗ and the
elements of µ are smooth functions, a commonly used approach for nonparametric analysis is to

approximate µk,d(·) for each (k, d) by a basis expansion of the form

µk,d(z) ≈

lk,d∑

l=1

γk,d,lBk,d,l(z) = γT
k,dBk,d(z), (7)

where {Bk,d,l(·); l = 1, · · · , lk,d} is a set of basis functions, γk,d = (γk,d,1, . . . , γk,d,lk,d
)T and Bk,d(z) =

(Bk,d,1(z), . . . , Bk,d,lk,d
(z))T (e.g., Stone, 1994). Although any basis approximation may be consid-

ered, appropriate basis choices in practice may depend on the specific nature of the data. For
example, a Fourier basis may be used when the underlying functions have periodicity, global poly-

nomials may be adequate for smooth functions, and B-splines (polynomial splines) may be desirable
for exhibiting local features. Because of their local flexibility and numerical stability, we use B-spline

bases in our simulation study.
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Let f∗

k (Yi; α
∗, σ, γ|Gi, Zi) be the approximate conditional density of Yi obtained by substituting

µk,d(·) with γT
k,dBk,d(·), where γ = (γT

K0,1, . . . , γ
T
K,D0

)T . The log-likelihood function LY (D; α∗, σ, µ)

can then be approximated by

L∗

Y (D; α∗, σ, γ) =
K∑

k=0

mk∑

i=mk−1+1

L∗

Y,k,i(Yi, Gi, Zi; α
∗, σ, γ), (8)

where L∗

Y,k,i(Yi, Gi, Zi; α
∗, σ, γ) = log f∗

k (Yi; α
∗, σ, γ|Gi, Zi) if K0 ≤ k ≤ K, and 0 otherwise. Let

ξ = (α∗T , βT , σT , γT )T be the vector of parameters involved in the approximate log-likelihood

function. We can approximate the likelihood by L∗

X,Y (D; ξ) = LX(D; β) + L∗

Y (D; α∗, σ, γ). Similar

to (6), the approximate MLE ξ̂ = (α̂∗T , β̂T , σ̂∗T , γ̂T )T of ξ maximizes L∗

X,Y (D; ξ) and satisfy the

normal equations S∗

X,Y (D; ξ̂) = 0, or equivalently

SX(D; β̂) = 0 and S∗

Y (D; α̂∗, σ̂∗, γ̂) = 0. (9)

Because of (7), the approximate MLE σ̂∗ of σ in (9) may be different from the MLE σ̂ obtained in
(6). Substituting γ̂ = (γ̂T

K0,1
, . . . , γ̂T

K,D0
)T back to (7), the predicted value for µk,d(z) is µ̂k,d(z) =

γ̂T
k,dBk,d(z). The estimation for θ∗ = ((α∗)T , βT , σT , µT )T depends on the approximation (7), where

lk,d may increase as the sample size n increases.

Since the asymptotic distributions of ξ̂ and µ̂k,d(z) have not been established, we propose a
bootstrap procedure based on the approximate likelihood ratio statistics from (7) for testing with

additive nonparametric components µk,d(·). Let ξ̃ = (α̃∗T , β̃T , σ̃∗T , γ̃T )T be the approximate MLEs

from L∗

X,Y (D, ξ) under the null hypothesis H0, that is, α̃
(k)
1 = α

(k)
1 = 0 for K0 ≤ k ≤ K and

β̃
(k)
1 = β

(k)
1 = 0 for 1 ≤ k ≤ K, and let LRT ∗(D) = L∗

X,Y (D; ξ̂) − L∗

X,Y (D; ξ̃) be the approximate

likelihood ratio test statistic. We reject H0 if LRT ∗(D) > cα for some α-level critical value cα.
Details of the bootstrap procedure for computing cα and extensive numerical studies are given in
the main paper (Wu et al. 2013).

4 Discussion

We have developed a joint model approach for analyzing genome-wide association study data with

a qualitative trait and a quantitative trait, and proposed a likelihood-based method to estimate
and test the pleiotropic genetic associations with the traits. Our estimation and inference proce-

dures may be applied to stratified samples where the quantitative trait is measured on some of
the strata. By jointly modeling both the quantitative and qualitative traits in a single analysis,

a joint association testing procedure may lead to more powerful tests than procedures based on
single-trait association tests. Further research is needed to develop estimation and testing proce-

dures which may incorporate additional linear or additive nonparametric terms such as gene-gene
and gene-environmental interactions. For regression models with nonparametric components, fur-

ther investigation is warranted to compare the joint model association tests with various potential
approaches of combining separate single-trait association tests.
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