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Abstract

In many applications of highly structured statistical models the likelihood function is in-
tractable; in particular, finding the normalisation constant of the distribution can be de-
manding. One way to sidestep this problem is to to adopt composite likelihood methods,
such as the pseudo-likelihood approach. In this paper we display composite likelihood
as a special case of a general estimation technique based on proper scoring rules, which
supply an unbiased estimating equation for any statistical model. The important class
of key local scoring rules avoids the need to compute normalising constants. Another
application arises in Bayesian model selection. The log Bayes factor measures by how
much the predictive log score for one model improves on that for another. However,
Bayes factors are not well-defined when improper prior distributions are used. If we
replace the log score by a suitable local proper scoring rule, these problems are avoided.

Keywords: Bayesian model selection, composite likelihood, homogeneous scoring rule,
Hyvärinen score, proper scoring rule, unbiased estimating equation

1 Proper scoring rules

Suppose You are required to quote a probability distribution Q for a quantity X , after which
Nature will reveal the value x of X . You will then suffer a loss S(x,Q). Such a function S,
contrasting a probabilistic forecast with an observed outcome, is termed a scoring rule. If
You actually consider X to have distribution P, then Your expected loss if You quote Q is
S(P,Q) := EX∼PS(X ,Q). The scoring rule is proper when, for each P, infQ S(P,Q) is attained
at Q = P. In this case “honesty is the best policy”: You are motivated to quote Your truly
held belief.

There is a very wide variety of proper scoring rules. Examples include the log score
(Good 1952), S(x,Q) = − logq(x), where q(·) is the density of A with respect to some un-
derlying measure µ; and the Brier or quadratic score (Brier 1950), S(x,Q) =

∫
q(y)2dµ(y)−

2q(x).

2 Estimation

Armed with a proper scoring rule S, for any parametric family {Pθ} we can estimate its
parameter θ from a sample (x1, . . . ,xN) by minimising the total empirical score ∑

N
t=1 S(xt ,Pθ ).

This is typically equivalent to solving

N

∑
t=1

s(xt ,θ) = 0 (1)
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where s(x,θ) := ∂S(x,Pθ )/∂θ . This supplies an unbiased estimating equation (Dawid 2007),
thereby leading to an M-estimator. When we use the log score, (1) is just the likelihood equa-
tion, and we obtain the maximum likelihood estimator. Estimators based on other proper
scoring rules will typically be consistent but not efficient; however, they may have compen-
sating virtues of robustness and/or tractability.

Often we will only know Pθ up to a multiplier:

p(x | θ) ∝ f (x | θ).

In this case to solve (1) we generally need to be able to compute and differentiate the nor-
malising factor Z(θ) =

∫
f (x | θ)dx. This can be problematic. However an escape route is

possible by using a suitable local proper scoring rule.

3 Locality

To evaluate the log score we only need to know the value of Your forecast density function,
q(·), at the value x of X that Nature in fact produces. It is thus termed a strictly local proper
scoring rule. It can be shown that this property essentially characterises the log score.

However, we can slightly weaken the locality requirement to admit further proper scoring
rules. For the case of a sample space that is a real interval,1 we ask that S(x,Q) should depend
on q(·) only through its value and the value of a finite number of its derivatives at x. Parry
et al. (2012) have characterised all such local proper scoring rules as a linear combination of
the log score and what they term a key local scoring rule. The simplest key local scoring rule
is based on the proposal by Hyvärinen (2005):

SH(x,Q) = 2∆ lnq(x)+ |∇ lnq(x)|2 (2)

where ∇ :=(∂/∂x), ∆ := ∂ 2/(∂x)2. The same formula (2) can be applied to the case of a mul-
tivariate observation X = (X1, . . . ,Xk), on interpreting ∇ := (∂/∂x j), ∆ := ∑

k
j=1 ∂ 2/(∂x j)

2.
An important property of every key local scoring rule is homogeneity: it is unchanged if

q(·) is scaled by a positive constant. In particular, S(x,Q) can be computed without knowl-
edge of the normalising constant of the distribution Q.

4 Composite likelihood and beyond

Consider a model for a multidimensional variable X. Let {Xk} be a collection of marginal
and/or conditional variables, and let Sk be a proper scoring rule for Xk. Then we can construct
a proper scoring rule for X as

S(x,Q) = ∑
k

Sk(xk,Qk) (3)

where Xk ∼ Qk when X ∼ Q. The form (3) localises the problem to the {Xk}, which can
simplify computation. When each Sk is the log score, (3) becomes a (negative log) composite
likelihood. We can thus treat composite likelihood in its own right, as supplying a proper
scoring rule, rather than as an approximation to true likelihood. Most of the extensive theory
and many applications of composite likelihood (see e.g. Statistica Sinica (2011)) extend virtu-
ally unchanged to the more general case (3): see Dawid and Musio (2013) for an application
to estimation for a spatial process.

1There are parallel results for the case of a discrete sample space (Dawid et al. 2012).
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4.1 Alternative approach

When the motivation for a composite likelihood approach is the problem of dealing with
the normalising constant of the joint distribution, an alternative is to apply a homogeneous
scoring rule to that distribution.

Example 1 Consider the multivariate normal model: Y = (Y1, . . . ,YN)∼N (µ,Φ−1). In this
case the multivariate Hyvärinen score becomes

−2tr(Φ)+ |Φ(y−µ)|2 . (4)

Now restrict to µ = 0 and Φ of the form ΦN = βAN +αIN , where AN has entries 1 imme-
diately above and below the diagonal, and 0 elsewhere. This defines a (not quite stationary)
AR(1) process. The normalising constant of the joint density involves the nasty term detΦN .
However, applying instead the multivariate Hyvärinen score (4) eliminates this problem, giv-
ing a simple quadratic:

−2Nα +
N

∑
r=1

(αyr +β zr)
2, (5)

where zr := yr−1 + yr+1 (taking y−1 = yN+1 = 0). Defining λ = −β/α (and assuming (5)
is minimised at an interior point of the parameter space) we get estimates λ̂ = syz/szz, α̂ =
N/syy.z, where syz := ∑

N
r=1 yrzr etc., and syy.z := syy− s2

yz/szz.
Thee above estimates in fact agree with those that would be given by pseudo-likelihood.

However if we have ν > N − 1 multiple, independent and identically distributed, series
generated by the above model, we might wish to base inference on the associated sum-of-
squares-and-product matrix S, which is a sufficient statistic, having the Wishart distribution
WN(ν ;Φ−1). It is not obvious how to apply pseudo-likelihood to this, but we can use the
multivariate Hyvärinen score, based on data {si j : 1≤ i≤ j ≤ N}. This delivers the unbiased
estimates

α̂ =
ν−N−1

N

N

∑
i=1

sii

β̂ =
ν−N−1

N−1

N−1

∑
i=1

si,i+1

where si j denotes the (i, j) entry of S−1.
2

5 Bayesian model selection

In Bayesian model selection, we assume that our observations X are generated from one of
a discrete collection M of parametric models, of possibly varying parameter dimension, and
wish to identify the correct model. For a model M ∈M , let its parameter be θ M ∈ RdM ,
its density at X = x be pM(x |θ M), and the prior density function for θ M be πM(θ M). The
marginal (“prior predictive”) distribution PM of X under M then has density

pM(x) =
∫

pM(x |θ M)πM(θ M)dθ M. (6)

Given data X = x0, the various models can be compared by means of the marginal likelihood
function, L(M) ∝ pM(x0). In particular, the posterior odds in favour of model M, as against
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model M′, are obtained on multiplying the corresponding prior odds by the Bayes factor,
BFM

M′ = LM/LM′ .
Expression (6) is somewhat sensitive to the choice of prior density πM. However, unlike

the case for within-model estimation, we can not simply replace that by an “objective” im-
proper prior density, e.g. uniform onRdM , since there is no natural scale for such a density —
and the formal marginal likelihood will be highly sensitive to the choices made of the scale
factors for the various models.

5.1 Use of scoring rules

We note that − logBFM
M′ is just the difference between the log scores for the two predictive

distributions, PM and PM′ , at the outcome X= x0. If we replace log score by a different proper
scoring rule, S(x,Q), we can use that instead to compare the two models. That is, we replace
− logBFM

M′ by the “score factor”

SFM
M′ := S(x,PM)−S(x,P′M). (7)

In particular, if S is homogeneous, SF will be entirely insensitive to the arbitrary choice
of scale factors in the prior, and will typically deliver a well-defined value, so long only as
pM, given by (6) (and similarly pM′), is finite at each x—but pM need not be integrable, as
indeed it will not be if πM is not. In this way we evade the above difficulties and obtain an
“objective” Bayesian model comparison.

5.2 Consistency

Suppose our models relate to a potentially infinite sequence X1,X2, . . . (not necessarily inde-
pendent and identically distributed). We would like our method to exhibit model consistency,
whereby, as n→ ∞, SFM

M′ →−∞ with probability 1 under any Pθ ∈ M, for any alternative
model M′. In order even to make sense of this requirement, we need to relate the scoring
rules used for different sample sizes. We can do this by associating a fixed scoring rule Si

with observation Xi (typically Si will not vary with i), and, for the case of n observations
Xn = (X1, . . . ,Xn), using the prequential score:

Sn(xn,Q) :=
n

∑
i=1

Si(xi,Qi), (8)

where Qi is the conditional distribution, under Q, of Xi, given (X j = x j : j = 1, . . . , i− 1).
When S is the log score this is just the overall multivariate log score, and is insensitive to the
ordering of the data; for other scores there may be some sensitivity to ordering.

Subject to some regularity conditions on the Si, it can be shown that use of the prequential
score will lead to consistent model selection.

Example 2 Consider the following normal linear model for a data-vector Y = (Y1, . . . ,Yn)
′:

Y∼N (Xθ ,σ2I), (9)

where X (n× p) is a known design matrix of rank p, and θ ∈Rp is an unknown parameter
vector. We take σ2 as known.
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We give θ a normal prior distribution: θ ∼N (m,V ). The marginal distribution Q of Y
is then Y∼N (Xm,XV X ′+σ2I), with precision matrix

Φ = (XV X ′+σ
2I)−1

= σ
−2
{

I−X
(
X ′X +σ

2V−1)−1
X ′
}

on applying the matrix lemma (equation (10)) of Lindley and Smith (1972).
An improper prior can be generated by allowing V−1 → 0, yielding Φ = σ−2Π, where

Π := I−X (X ′X)−1 X ′ is the projection matrix onto the space of residuals. Although this Φ

is singular, and thus can not arise from any genuine dispersion matrix, there is no problem in
using it to evaluate the Hyvärinen score given by (4). We obtain:

SH(y,Q) =
1

σ4 {RSS−2νσ
2} (10)

where RSS is the usual residual sum-of-squares, on ν := n− p degrees of freedom. This is
well-defined so long as ν > 0.

When we are comparing normal linear models all with the same known variance σ2, (10)
is equivalent to (RSS/σ2)+2p, Akaike’s AIC for this case — which is known not to deliver
consistent model selection. If instead we use the prequential score (8), with each term based
on the univariate Hyvärinen score, we obtain

Sn
H =

n

∑
i=p

1
k2

i σ4 (Z
2
i −2σ

2) (n≥ p) (11)

where Zi ∼N (0,σ2) is the difference between Yi and its least-squares predictor based on
(Y1, . . . ,Yi−1), divided by ki. Without the term k2

i , (11) would be the same as (10), and so
inconsistent. With it (even when ki → 1, which will typically be the case), the difference
between the two expressions tends to infinity, and use of Sn

H does indeed deliver consistent
model selection. 2

6 Conclusion

Proper scoring rules, of which there is a very great variety, supply a valuable and versatile
extension to standard statistical theory based on the likelihood function. Many of the standard
results can be applied, with little modification, in this more general setting. Homogeneous
proper scoring rules, which do not make any use of normalising constant of a distribution,
prove particularly useful in cases where that constant is computationally intractable, or even
non-existent. We have illustrated the application of proper scoring rules for parameter esti-
mation and Bayesian model selection. We believe that there will be many other problems for
which they will supply a valuable additional tool in the statistician’s kitbag.
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