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Abstract

Available data to compute inequality indicators in Italy come mainly
from sample surveys, such as the Survey on Income and Living Conditions
(EU-SILC). However, these data can be used to produce accurate estimates
only at national or regional level (NUTS 2 level). To obtain estimates refer-
ring to smaller unplanned domains small area methodologies can be used.
In this work I propose a smearing type estimator for the Gini’s coefficient
and the Theil’s index to obtain estimates in the Provinces of the Tuscany
Region (LAU 1 level). The proposed estimators are based on the M-quantile
models, which do not impose strong distributional assumptions and are out-
lier robust. The use of these models for poverty and inequality estimation
may protect against departures from assumptions of the traditional unit-
level nested error regression model for small area estimation. In this work I
also propose a model-based simulation to show the performance of the pro-
posed estimators. Moreover, some advices on bootstrap estimation of mean
squared error are given.
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1 Introduction

Sample surveys provide an effective way of obtaining estimates for population
characteristics. Often, in some unplanned areas or domains of interest, direct
estimators, i.e. estimation based only on the sample data from the domain (Rao,
2003), are not sufficiently precise. These areas are identified with the term “small
areas” and there is need of alternative methods to obtain reliable estimates, such
as model-based methods.

In this paper I focus on the small area estimation of Theil and Gini inequality
indexes. This work is motivated by the fact that small area estimates of inequality
is yet unexplored.

In section 2 I briefly review the M-quantile small area model and present point
estimation of Theil’s and Gini’s inequality indexes. In this section I also give
some advice on mean squared error estimation using a non-parametric bootstrap
approach. In section 3 the performance of the proposed estimators is empirically
evaluated with model based Monte Carlo simulations. Finally, in section 4 I
present estimates of Theil and Gini indexes at provincial level (LAU 1) in Tuscany.

2 Small area estimation of inequality using the M-
quantile approach

In what follows I assume that a vector of p auxiliary variable xij is known for each
population unit i in small area j = 1, . . . ,m and that values of the variable of
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interest y are available from a random sample, s, that includes units from all the
small areas of interest. I denote the population size, sample size, sampled part of
the population and non sampled part of the population in area j respectively by
Nj , nj , sj and rj . I assume that the sum over the areas of Nj and nj is equal to N
and n respectively. We further assume that conditional on covariate information
for example, design variables, the sampling design is ignorable.

In this work I focus on the M-quantile approach to small area estimation
(Chambers and Tzavidis, 2006), letting investigation on inequality estimation
under the mixed models approach to future works.

Let us for the moment and for notational simplicity drop subscript j. Let
(xTi , yi), i = 1, · · · , n be the observed values for a random sample of n units,
where xTi are row p-vectors of known auxiliary variables and yis are realization of
a continuous random variable with unknown continuous cumulative distribution
function F . The M-quantile of order q for the conditional density of y given the set
of covariates x, f(y|x), is defined as the solution MQy(q|x;ψ) of the estimating
equation

∫
ψq{y −MQy(q|x;ψ)}f(y|x) dy = 0. Here, ψq denotes an asymmetric

influence function, which is the derivative of an asymmetric loss function ρq. A
linear M-quantile regression model yi given xi is one where we assume that

MQy(q|xi;ψ) = xi
Tβψ(q). (1)

Estimates of βψ(q) are obtained by minimizing

n∑
i=1

ρq
(
yi − xi

Tβψ(q)
)
. (2)

Throughout this paper I will take the linear M-quantile regression model to be
defined by when ρq is the Huber loss function (Breckling and Chambers, 1988).
Setting the first derivative of (2) equal to zero leads to the following estimating
equation

n∑
i=1

ψq(eiq)xi = 0, (3)

where eiq = yi − xTi βψ(q), ψq(eiq) = 2ψ(s−1eiq){q I(eiq > 0) + (1− q) I(eiq ≤ 0)}
and s > 0 is a suitable estimate of scale, s = (median |eiq|)/0.6745. I use the
Huber Proposal 2 influence function, ψ(u) = uI(−c ≤ u ≤ c) + c · sgn(u).
Provided that the tuning constant c is strictly greater than zero, estimates of
βψ(q) are obtained using iterative weighted least squares (IWLS).

Using M-quantile it is possible to characterize the conditional variability
across the population of interest by the M-quantile coefficients of the popula-
tion units. For unit i with values yi and xi, this coefficient is the value qi such
that MQy(qi|xi;ψ) = yi. The M-quantile coefficients are determined at the pop-
ulation level. Consequently, if a hierarchical structure does explain part of the
variability in the population data, then we expect units within areas (or domains)
defined by this hierarchy to have similar M-quantile coefficients. When the con-
ditional M-quantiles are assumed to follow the linear model (1), with βψ(q) a
sufficiently smooth function of q, the M-quantile small area model is

yij = xTijβψ(θj) + εij ,

where θj is the average value of the M-quantile coefficients (qij) of the units in
area j and εij is an unit level error with distribution function G. Giving that only
sampled observation are known the parameters βψ and θj have to be estimated.
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βψ is estimated following (3) while θj is estimated by the sample mean of the
M-quantile coefficients of sampled units in area j.

In this paper the parameters of interest are Gini and Theil inequality indexes.
Given the income variable y ≥ 0, the Gini index in area j is defined as

Gj =
(
Nj

∑
i∈Ωj

yij

)−1(
2
∑
i∈Ωj

y(i)ji
)
− (Nj + 1)/Nj , (4)

where y(i)j are the yij sorted in ascending order and Ωj is the set of all the unit
in area j.

A first attempt to estimate small area Gini inequality index, equation (4), is
based on a smearing estimator

Ĝsmj = N−1
j

∑
k∈Ωj

{
2
∑

i∈sj
(
(ŷ(k)j + eij)i

)
nj
∑

i∈sj (ŷkj + eij)
− nj + 1

nj

}
, (5)

where ŷkj = xTkjβ̂ψ(θ̂j) with k ∈ rj , eij = yij−xTijβ̂ψ(θ̂j) with i ∈ sj and ŷ(k)j , k ∈
rj are the ŷkj sorted in ascending order. Here we suppose that link between
sampled values and population values is not possible so that sampled values are
used only to estimate model parameters and to compute model residuals eij .

The Theil index (that is a special case of the general entropy index) in area
j can be defined as

Tj =

∫ +∞
−∞ y log y dFj(y)∫ +∞
−∞ y dFj(y)

− log
(∫ +∞

−∞
y dFj(y)

)
. (6)

Using the smearing estimator of the cumulative distribution function proposed
by Chambers and Dunstan (1986) we obtain a small area estimator for the Theil
index (6) based on the M-quantile model:

T̂ smj =

∫ +∞
−∞ t log tdF̂j(t)∫ +∞
−∞ t dF̂j(t)

− log
(∫ +∞

−∞
tdF̂j(t)

)
, (7)

where

F̂j(t) = N−1
j

{∑
i∈sj

I(yij ≤ t) + n−1
j

∑
i∈sj

∑
k∈rj

I(ŷkj + eij ≤ t)
}
.

Noting that∫ +∞

−∞
g(t) dF̂j(t) = N−1

j

{∑
i∈sj

g(yij) + n−1
j

∑
i∈sj

∑
k∈rj

g(ŷkj + eij)
}

the proposed estimators (7) of the small area Theil index reduces to

T̂ smj =
N−1
j

{∑
i∈sj yij log yij + n−1

j

∑
i∈sj

∑
k∈rj (ŷkj + eij) log(ŷkj + eij)

}
N−1
j

{∑
i∈sj yij +

∑
k∈rj ŷkj + (Nj/nj − 1)

∑
i∈sj eij

}
− log

(
N−1
j

{∑
i∈sj

yij +
∑
k∈rj

ŷkj + (Nj/nj − 1)
∑
i∈sj

eij

})
. (8)

When the linkage between sampled values and population values is not possible
the terms

∑
i∈sj yij and

∑
i∈sj yij log yij should be dropped from (8). This is
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motivated from the fact that income y is predicted for all the population units in
the area, also for the sampled ones.

Theil index is scale invariant and it can be shown that Tj/ logNj ∈ [0, 1].
The non-parametric bootstrap scheme proposed by Marchetti et al. (2012)

can be used to estimate the mean squared error of the estimators (5) and (8),
but further investigation is needed. As an alternative an analytic mean squared
error estimator for the Theil index is under study.

3 Empirical evaluation of performance of small area
inequality estimators

In this section I use model-based Monte-Carlo simulations to empirically evaluate
the performance of the small area estimator (5) and (8). The behavior of this
two estimators is assessed under two scenarios for the area-specific sample and
population sizes.

Population data Ω = (x, y) in m = 30 small areas are generated by using
a unit level area random effects model with normally distributed random area
effects and unit level errors as follows

yij = 3000− 150 ∗ xij + γj + εij ,

where the area random effects γj ∼ N(0, 2002), the unit level errors εij ∼
N(0, 8002), the auxiliary variable xij ∼ N(µj , 1) where µj ∼ U [4, 10] and µj
was held fixed over simulations.

For each Monte Carlo simulation a within small areas random sample is se-
lected. Two scenarios for the population and sample sizes are investigated. Under
the first scenario (denoted in the tables of results by λ = 1) the total popula-
tion size is N = 8400 with small area-specific population sizes ranging between
150 ≤ Nj ≤ 440. The total sample size is n = 840 and the area-specific sample
sizes are ranging between 15 ≤ nj ≤ 44. Under the second scenario (denoted in
the tables of results by λ = 2) the total population size is N = 2820 with area-
specific population sizes ranging between 50 ≤ Nj ≤ 150 and the total sample
size is n = 282 with area-specific sample sizes ranging between 5 ≤ nj ≤ 15.
Using these two scenarios enables to assess the effect of the domain sample sizes
both on the bias and the stability of the estimators.

I evaluated the performance of the proposed estimators in terms of bias, ab-
solute bais and root mean squared error:

B(Ẑj) = H−1
H∑
h=1

(Ẑhj − Zhj ) A(Ẑj) = H−1
H∑
h=1

|Ẑhj − Zhj |

R(Ẑj) =
(
H−1

H∑
h=1

(Ẑhj − Zhj )2
)1/2

,

where Zhj is the true, i.e. computed on all the population units, value of a given

statistics in area j in the Monte Carlo iteration h, while Ẑhj is its estimate. So
Zj can be one of Gj or Tj . H is equal 1000 and it is the number of Monte Carlo
simulations. Results are summarized over simulations and averaged over areas,
they are shown in table 1.

The two estimators show a similar behavior in terms of bias, absolute bias
and root mean squared error. However the Theil estimator (8) is a little bit more
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Gini Theil
λ = 1 λ = 2 λ = 1 λ = 2

Bias −0.007 −0.017 −0.001 −0.003
Abs Bias 0.016 0.033 0.021 0.029
RMSE 0.020 0.040 0.026 0.035

Table 1: Averages over areas and simulations of the bias, absolute bias and em-
pirical (Monte Carlo) root mean squared error (RMSE) for M-quantile estimators
of small area Gini and Theil inequality indexes

accurate and precise than the Gini estimator (5). This is true in the two sample
size scenario. We can also see that the root mean squared error, the bias and
absolute bias are bigger for the scenario with smaller sample size for both the
indexes as expected.

4 Estimating inequality for provinces in Tuscany

Inequality estimation based on Gini and Theil indexes is performed by using data
from the 2008 European Survey on Income and Living Conditions (EU-SILC) in
Italy and the 2001 Census microdata for the region of Tuscany. In Italy provinces
(LAU 1) are partitions of a region (NUTS 2) and are, with respect to EU-SILC,
unplanned domains. The sample sizes for provinces in Tuscany range from 65
households in the Grosseto province to 415 households in the Florence Province
with an average sample size of 149 households (median 129 households). The
population of households in the different provinces based on 2001 Census data
ranges from 80,810 households in the province of Massa-Carrara to 376,300 in
the province of Florence with the total number of households in Tuscany being
1,388,252. Although the 2008 EU-SILC data were collected six years after the
census (2008 EU-SILC data refers to 2007), the 2001–2007 period was one of
relatively slow growth and low inflation in Italy, so it is reasonable to assume
that there was relatively little change. These data were provided by the Italian
National Institute of Statistics to the researchers of the SAMPLE project (Small
Area Methods for Poverty and Living Condition Estimates, is a research project
funded by the European Commission under its Seventh Framework Programme)
and were analyzed by respecting all confidentiality restrictions.

Using the Tuscany EU-SILC survey data I estimated a small area working
model. The response variable is the household equivalised income. The ex-
planatory variables I considered are those that are common to the survey and
Census datasets: gender, age, occupational status and years in education (vari-
ables referred to the head of the household), ownership status of the house and
the number of household members. The fit of a two-level (households within
provinces) random effects model using the above explanatory variables reveals
departures from the assumed normality of the level 1 and level 2 error terms. For
this reason, I decided to use an outlier robust model, the M-quantile small area
model. The results are summarized in tables 2

According to both the indexes, inequality is higher in Grosseto, Pistoia and
Arezzo. However, the level of inequality in the Tuscany provinces is lower than
the inequality in Italy that has an estimated Gini coefficent in 2008 equal to 0.31
(Theil index is not available for Italy).

Further research includes alternative estimators for the Gini coefficient and
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Province Gini Theil

Massa–Carrara 0.283 0.104
Lucca 0.284 0.086
Pistoia 0.302 0.142
Firenze 0.288 0.097
Livorno 0.247 0.082
Pisa 0.265 0.103
Arezzo 0.303 0.141
Siena 0.272 0.116
Grosseto 0.306 0.138
Prato 0.253 0.074

Table 2: Estimates of the Gini and Theil inequality indexes for provinces in
Tuscany

bootstrap estimators for the mean squared error of Gini and Theil estimators,
which enables for accuracy of the estimates and allows cross-sectional compar-
isons. Also an analytic mean squared error estimator of the Thail index is under
study. Estimates has been computed by the R language (R Development Core
Team, 2010).
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