Total Least-Squares Adjustment with Prior Information vs. the Penalized Least-Squares Approach to EIV-Models

Burkhard Schaffrin1,3 and Kyle Snow1,2

1Geodetic Science Program, School of Earth Sciences, The Ohio State University, Columbus, Ohio, USA
2Topcon Positioning Systems, Inc., Columbus, Ohio, USA
3Corresponding author: Burkhard Schaffrin, e-mail: schaffrin.1@osu.edu

Abstract

In the framework of a Gauss-Markov Model (GMM), it is well known that the Bayesian estimator, based on prior information, seems to coincide with the penalized least-squares estimator, based on Tykhonov regularization. However, their Mean Squared Error (MSE) matrices will be different, giving rise to a criterion that can determine the superiority of one over the other with respect to their MSE-risk.

Here, a similar comparison will be undertaken within the framework of Errors-In-Variables (EIV) Models. An attempt will be made to determine the MSE-risk for both the Bayesian Total Least-Squares (TLS) estimator and the penalized TLS estimator, which should result in a generalized criterion for the superiority of one over the other.

Key Words: EIV-Model, MSE-risk comparison, penalized TLS approach, prior information, TLS collocation

0. Introduction

It has long been known that Tykhonov regularization (i.e., the penalized Least-Squares approach) within a Gauss-Markov Model (GMM) leads to numerically identical estimates for the unknown parameters as the standard (weighted) Least-Squares approach within a Random Effects Model (REM), where the fixed parameters have been replaced by random effects with known expectation and dispersion; more details may be found in the books by Rao et al. (2008), Engl et al. (1996), or Grafarend and Schaffrin (1993), among others. It has been pointed out, however, by Schaffrin (2008) that the formal MSE-risk turns out differently for both estimators. In fact, a criterion was provided to decide under which condition one of the estimators will be superior over the other; cf. Schaffrin (2008, Theorem 1).

In this contribution, a similar comparison will be undertaken between the penalized Total Least-Squares (TLS) approach within an Errors-In-Variables (EIV) Model and TLS Collocation within an EIV-Model with prior information. For this purpose, the EIV-Model will be interpreted as a nonlinear Gauss-Helmert Model (GHM) that, after linearization, allows the derivation of MSE-risk formulas in first-order approximation.

Starting with a brief review of \textit{penalized TLS adjustment} according to Schaffrin and Snow (2010) in chapter 1, a similar review will follow to explain \textit{TLS Collocation} in accordance with Schaffrin (2009) and Snow and Schaffrin (2012) in chapter 2. Finally, chapter 3 will provide the key theorem on MSE-risk comparisons before chapter 4 concludes this contribution.
1. A brief review of the penalized TLS adjustment

Let the Errors-In-Variables (EIV) Model be defined as

\[y = (X - E_X) \beta + e_y, \quad \text{rk} X = m < k, \quad (1.1a) \]

\[
\begin{bmatrix}
 e_y \\
 e_X := \text{vec} E_X
\end{bmatrix}
\sim \begin{bmatrix}
 0 \\
 I_k \\
 0 \\
 I_{km}
\end{bmatrix} = \sigma_0^2 I_n,
\quad (1.1b)
\]

where

- \([y, X]\) denotes a \(k \times (m + 1)\) matrix of observations,
- \([e_y, E_X]\) a \(k \times (m + 1)\) matrix of random errors,
- \(\beta_\mu\) an \(m \times 1\) vector of (unknown) parameters, and
- \(\sigma_0^2\) the (unknown) variance component in front of the so-called “ cofactor matrix,” here the identity matrix \(I_n\) of size \(n \times n\) with \(n := k(m + 1)\).

The “vec” operator stacks each column of a matrix underneath the previous one. After introducing the new symbols

\[Y := \text{vec} [y, X], \quad e := \text{vec} [e_y, E_X], \quad \Xi := \beta_\mu, \quad (1.2) \]

the above EIV-Model can be interpreted as a nonlinear Gauss-Helmert Model (GHM)

\[b(Y - e, \Xi) = 0, \quad e \sim (0, \sigma_0^2 P^{-1}), \quad (1.3) \]

where \(b: \mathbb{R}^{m+n} \to \mathbb{R}^{m+r}\) denotes a given multivariate nonlinear function \((r < n)\).

Obviously, in the case of the EIV-Model \((1.1a)\) and \((1.1b)\), it holds that:

\[b(Y - e, \Xi) := y - X \cdot \beta_\mu - [I_k, -(\beta_\mu^T \otimes I_k)] \begin{bmatrix}
 e_y \\
 e_X
\end{bmatrix} = 0, \quad (1.4a) \]

\[P := I_n, \quad r = n - \text{rk} X = n - m \quad ("redundancy"), \quad (1.4b) \]

Here, \(\otimes\) denotes the Kronecker-Zehfuss product of matrices, defined by

\[G \otimes H := [g_{ij} \cdot H] \quad \text{if} \quad G = [g_{ij}]. \quad (1.5) \]

The model \((1.4a)\) and \((1.4b)\) is better known in the form

\[y := X \cdot \beta_\mu + Be, \quad e \sim (0, \sigma_0^2 I_n), \quad (1.6a) \]

where the \(k \times n\) matrix \(B\) is defined as

\[B := [I_k, -(\beta_\mu^T \otimes I_k)] = B(\beta_\mu), \quad (1.6b) \]

thus depending on the parameter vector \(\beta_\mu\). Therefore, the standard Least-Squares solution of \((1.6a)\) and \((1.6b)\), which corresponds to the TLS solution of \((1.1a)\) and \((1.1b)\), can be generated by iterative linearization via the “normal equations” (for \(j \in \mathbb{N}_0\))

\[(A^{(j)})^T [B^{(j)} (B^{(j)})^T]^{-1} A^{(j)} \cdot \hat{\xi}_{j+1} = (A^{(j)})^T [B^{(j)} (B^{(j)})^T]^{-1} w_j, \quad (1.7a) \]

where

\[\hat{\xi}_{j+1} := \Xi - \Xi^{(j)} = \beta_\mu - \beta_{\mu}^{(j)}, \quad \mu_j := Y - \hat{e}^{(j)}, \quad (1.7b) \]

\[A^{(j)} := \frac{\partial b}{\partial \Xi^T} \bigg|_{\mu_j, \beta_{\mu}^{(j)}} = X - \hat{E}_X^{(j)}, \quad B^{(j)} = B(\beta_{\mu}^{(j)}), \quad (1.7c) \]

\[w_j := b(\mu_j, \beta_{\mu}^{(j)}) + B^{(j)} (Y - \mu_j) \approx b(Y, \beta_{\mu}^{(j)}) = Y - X \beta_{\mu}^{(j)}, \quad (1.7d) \]

and

\[\hat{e}^{(j+1)} = (B^{(j)})^T [B^{(j)} (B^{(j)})^T]^{-1} (w_j - A^{(j)} \hat{\xi}_{j+1}), \quad (1.7e) \]
After convergence, indicated by \(|\hat{\xi}_{j+1}| < \delta\) for a chosen threshold \(\delta\), the Mean Squared Error (MSE) matrix and the dispersion matrix of \(\hat{\Xi} = \hat{\beta}_\mu = \beta_{\mu}^{(j)} + \hat{\xi}_{j+1}\) coincide in first-order approximation as:

\[
D\{\hat{\Xi}\} = \sigma_0^2\left[(A^{(j)})^T [B^{(j)}(B^{(j)})^T]^{-1} A^{(j)} \right]^{-1} = \\
= \left[(X - \hat{E})(X - \hat{E})^T \right]^{-1} \cdot \sigma_0^2(1 + \hat{\Xi}^T \hat{\Xi}) = \text{MSE}\{\hat{\Xi}\},
\]

(1.8a)

with the variance component estimate best computed through:

\[
\hat{\sigma}_0^2(1 + \hat{\Xi}^T \hat{\Xi}) = r^{-1} \cdot w_j^T (w_j - A^{(j)} \hat{\xi}_{j+1}) = \\
= r^{-1} \cdot (y - X \cdot \hat{\Xi})^T (y - X \cdot \hat{\Xi}).
\]

(1.8b) (1.8c)

In the penalized TLS approach, the original objective function

\[
e^T e = \text{min. subject to (1.6a) and (1.6b)}
\]

is now replaced by

\[
e^T e + \lambda \cdot \beta_{\mu}^T R \beta_{\mu} = \text{min. subject to (1.6a) and (1.6b)},
\]

(1.10)

where \(\lambda\) is a chosen positive number and \(R\) a chosen positive-definite \(m \times m\) matrix. Following Schaffrin and Snow (2010), the “modified normal equations” now read (for \(j \in \mathbb{N}_0\))

\[
\left[\lambda(1 + (\beta_{\mu}^{(j)})^T \beta_{\mu}^{(j)}) \cdot R + (X - \tilde{E}_X)^T (X - \tilde{E}_X) \right] \cdot \hat{\xi}_{j+1} = \label{1.11a}
\]

\[
= \left[(X - \tilde{E}_X)^T w_j - \lambda(1 + (\beta_{\mu}^{(j)})^T \beta_{\mu}^{(j)}) \cdot R \cdot \beta_{\mu}^{(j)} \right]
\]

(1.11a)

with

\[
\tilde{e}^{(j+1)} = (B^{(j)})^T [B^{(j)}(B^{(j)})^T]^{-1} (w_j - A^{(j)} \hat{\xi}_{j+1}).
\]

(1.11b)

After convergence, where \(|\hat{\xi}_{j+1}| < \delta\) for a chosen threshold \(\delta\), the bias vector results in first-order approximation as

\[
\beta \approx -\left[I_m + \lambda^{-1}(1 + \hat{\Xi}^T \hat{\Xi})^{-1} \cdot (X - \tilde{E}_X)^T (X - \tilde{E}_X) \right]^{-1} \cdot \Xi,
\]

(1.12a)

with

\[
\hat{\Xi} = \hat{\beta}_\mu = \beta_{\mu}^{(j)} + \hat{\xi}_{j+1},
\]

(1.12b)

and the dispersion matrix of \(\hat{\Xi}\) as

\[
D\{\hat{\Xi}\} \approx \sigma_0^2(1 + \hat{\Xi}^T \hat{\Xi}) \cdot \left[\lambda(1 + \hat{\Xi}^T \hat{\Xi}) \cdot R + (X - \tilde{E}_X)^T (X - \tilde{E}_X) \right]^{-1}.
\]

(1.12c)

from which the MSE matrix of \(\hat{\Xi}\) can be computed via

\[
\text{MSE}\{\hat{\Xi}\} = D\{\hat{\Xi}\} + \beta \beta^T \approx \\
\approx \sigma_0^2(1 + \hat{\Xi}^T \hat{\Xi}) \cdot \left[\lambda(1 + \hat{\Xi}^T \hat{\Xi}) \cdot R + (X - \tilde{E}_X)^T (X - \tilde{E}_X) \right]^{-1}.
\]

(1.12d)

\[
\cdot \left[\lambda(1 + \hat{\Xi}^T \hat{\Xi}) \cdot R \Xi \cdot (\lambda/\sigma_0^2) \cdot \Xi^T R + (X - \tilde{E}_X)^T (X - \tilde{E}_X) \right];
\]

\[
\cdot \left[\lambda(1 + \hat{\Xi}^T \hat{\Xi}) \cdot R + (X - \tilde{E}_X)^T (X - \tilde{E}_X) \right]^{-1}. \]

(1.12d)

This formula will become the basis for the MSE-risk comparison in chapter 3.
2. TLS Collocation: The Least-Squares approach to the EIV-Model with prior information

In this chapter, stochastic prior information is added to the EIV-Model (1.1a) and (1.1b) so that it now shows a random effects vector \(b_\mu \) in lieu of the original parameter vector \(\beta_\mu \):

\[
y = (X - E_X) b_\mu + e_y, \quad \beta_0 = b_\mu + e_0,
\]

(2.1a)

where \(b_\mu \) is a given \(m \times 1 \) vector of prior information, and \(e_0 \) is an \(m \times 1 \) vector of random errors with

\[
Q_0 = \text{a nonnegative-definite (nnd) cofactor matrix.}
\]

To simply the formulas, \(\beta_0 := 0 \) is set in the following.

Obviously, in its linearized form corresponding to (1.6a) and (1.6b), the model (2.1a) and (2.1b) can be summarized as:

\[
y = X_{k \times m} \cdot b_\mu + B e, \quad 0 = b_\mu + e_0,
\]

(2.2a)

where the \(k \times n \) matrix \(B \) now depends on \(b_\mu \):

\[
B := \begin{bmatrix} I_n, -(b_\mu^T \otimes I_k) \end{bmatrix} = B(b_\mu).
\]

(2.2c)

Following the approach by Snow and Schaffrin (2012), who applied weighted TLS adjustment to model (2.2a) to (2.2c), the predicted vector of random effects may be iteratively computed (for \(j \in \mathbb{N}_0 \)) via

\[
\hat{b}_\mu^{(j+1)} = -\hat{e}_0^{(j+1)} = \left[(A^{(j)})^T [B^{(j)}(B^{(j)})^T]^{-1} A^{(j)} + Q_0^{-1} \right]^{-1}.
\]

\[
\cdot (A^{(j)})^T [B^{(j)}(B^{(j)})^T]^{-1} (y - \hat{E}_X \cdot \hat{b}_\mu^{(j)}) = \text{if } Q_0^{-1} \text{ exists, (2.3a)}
\]

\[
= [I_m + Q_0 (A^{(j)})^T [B^{(j)}(B^{(j)})^T]^{-1} A^{(j)}]^{-1}.
\]

\[
\cdot Q_0 (A^{(j)})^T [B^{(j)}(B^{(j)})^T]^{-1} (y - \hat{E}_X \cdot \hat{b}_\mu^{(j)}) = Q_0 (A^{(j)})^T [B^{(j)}(B^{(j)})^T]^{-1} A^{(j)} Q_0 (A^{(j)})^T^{-1} (y - \hat{E}_X \cdot \hat{b}_\mu^{(j)})
\]

(2.3b)

\[
\text{if } Q_0 \text{ is possibly singular, (2.3c)}
\]

where, analogous to (1.7c), the identity \(A^{(j)} = X - \hat{E}_X^{(j)} \) has been used. The iteration procedure also permits computation of the residual vector, \(\tilde{e} := \text{vec}[\tilde{e}_y, \tilde{E}_X] \), as

\[
\tilde{e}^{(j+1)} = (B^{(j)})^T (B^{(j)}(B^{(j)})^T)^{-1} (y - \hat{E}_X \cdot \hat{b}_\mu^{(j)} - A^{(j)} \cdot \tilde{b}_\mu^{(j+1)}) = (B^{(j)})^T (B^{(j)}(B^{(j)})^T)^{-1} [(y - X \cdot b_\mu^{(j+1)}) + \hat{E}_X \cdot (\tilde{b}_\mu^{(j+1)} - \tilde{b}_\mu^{(j)})].
\]

(2.3d)

(2.3e)

The solution \(\tilde{b}_\mu \), after convergence where \(\| \tilde{b}_\mu^{(j+1)} - \tilde{b}_\mu^{(j)} \| < \delta \) for a chosen threshold \(\delta \), is known to be “weakly unbiased” in the sense that

\[
E\{\tilde{b}_\mu\} = 0 = \beta_0 = E\{b_\mu\}
\]

(2.4)

holds for the given prior information vector \(\beta_0 \). Thus, the MSE matrix of \(\tilde{b}_\mu \) and the
dispersion matrix of \((\tilde{b}_\mu - b_\mu)\) will coincide in first-order approximation, namely, if \(Q_0^{-1}\) exists:

\[
D(\tilde{b}_\mu - b_\mu) = \sigma_0^2(Q_0^{-1} + \langle A^{(j)} \rangle^T \langle B^{(j)} \rangle^T)^{-1} A^{(j)} = \sigma_0^2(1 + \tilde{b}_\mu^T b_\mu) \left[\left(1 + \tilde{b}_\mu^T b_\mu \right) Q_0^{-1} + (X - \tilde{E}_X) (X - \tilde{E}_X)^T \right]^{-1} \approx\
\]

with the variance component estimate best computed via

\[
\sigma_0^2(1 + \tilde{b}_\mu^T b_\mu) = n^{-1} \cdot (y - X \tilde{b}_\mu)^T \cdot [I_m + (1 + \tilde{b}_\mu^T b_\mu)^{-1} \cdot (X - \tilde{E}_X) Q_0 (X - \tilde{E}_X)^T] (y - X \tilde{b}_\mu).
\]

In the following chapter, formulas (2.3a) to (2.3c) need to be compared with (1.11a), and – above all – a criterion ought to be found that explains when \(\tilde{b}_\mu\) is superior over \(\hat{z} = \hat{\beta}_\mu\), and vice versa.

3. A comparison of MSE-risks

In order to compare \(\tilde{b}_\mu\) directly with \(\hat{z} = \hat{\beta}_\mu = \beta_\mu^{(j)} + \hat{\xi}_{j+1}\), formula (1.11a) needs to be further transformed into

\[
\left[\lambda \left(1 + (\beta_\mu^{(j)})^T \beta_\mu^{(j)} \right) \cdot R + (X - \tilde{E}_X)^T (X - \tilde{E}_X) \right] \left(\beta_\mu^{(j)} + \hat{\xi}_{j+1} \right) = (X - \tilde{E}_X)^T \left[(y - X \beta_\mu^{(j)}) + (X - \tilde{E}_X) \beta_\mu^{(j)} \right] = (X - \tilde{E}_X)^T (y - \tilde{E}_X \beta_\mu^{(j)}),
\]

where the identity \(w_j = y - (A^{(j)} + \tilde{E}_X \beta_\mu^{(j)})\) has been used. Equation (3.1) clearly coincides with (2.3a) numerically if and only if the condition

\[
Q_0^{-1} = \lambda \cdot R
\]

is fulfilled. Under this assumption, however, formula (1.12d) turns into

\[
\text{MSE}\{\hat{z} = \hat{\beta}_\mu\} = \sigma_0^2(1 + \tilde{z}^T \tilde{z}) \cdot \left[(1 + \tilde{z}^T \tilde{z}) \cdot Q_0^{-1} + (X - \tilde{E}_X)^T (X - \tilde{E}_X) \right]^{-1} \cdot \left[(1 + \tilde{z}^T \tilde{z}) \cdot Q_0^{-1} + (X - \tilde{E}_X) \right] \cdot \left[(1 + \tilde{z}^T \tilde{z}) \cdot Q_0^{-1} + (X - \tilde{E}_X)^T (X - \tilde{E}_X) \right]^{-1},
\]

with \(\tilde{E}_X\) representing the same residual matrix in both formulas.

Hence, (3.3) can now be directly compared with formula (2.5a) for the MSE matrix of \(\tilde{b}_\mu\), resulting in the

Theorem. The Penalized Total Least-Squares solution \(\hat{z} = \hat{\beta}_\mu\) with \(Q_0^{-1} := \lambda \cdot R\) is superior to the “Bayesian estimate” \(\tilde{b}_\mu\), that is based on the “TLS Collocation” solution, whenever the difference between their MSE matrices is, at least, positive-semidefinite:

\[
\text{MSE}\{\tilde{b}_\mu\} - \text{MSE}\{\hat{z} = \hat{\beta}_\mu\} \geq_L 0,
\]

where \(\geq_L\) denotes Löwner’s partial ordering of matrices; see, e.g., Marshall et al. (2009). This is the case if and only if one of the equivalent inequalities

\[
\Xi^T Q_0^{-1} \Xi \leq \sigma_0^2 \quad \text{or} \quad \beta_\mu^T R \beta_\mu \leq \sigma_0^2 / \lambda
\]

holds true.

Proof. From a direct comparison of (2.5a) with (3.3), noting that \(\hat{z} = \hat{\beta} = \tilde{b}_\mu\) numerically,
it becomes immediately clear that
\[\text{MSE}\{\tilde{b}_\mu\} \geq L \text{MSE}\{\hat{\beta}_\mu\} \iff Q_0^{-1} \geq L \left(\Xi \sigma_0^{-2} \Xi^T \right) Q_0^{-1}, \]
which first implies the inequality \(\Xi^T Q_0^{-1} \Xi \geq (\Xi^T Q_0^{-1} \Xi)^2 / \sigma_0^2 \) and, with (3.2) and \(\Xi = \beta_\mu \neq 0 \), also the inequality \(\beta_\mu^T R \beta_\mu \leq \sigma_0^2 / \lambda \).

That each of these inequalities is also sufficient for (3.4) to hold true, now follows from a result by Baksalary and Kala (1983).

Obviously, the inequalities (3.5a-b) become only practical when the quantities \(\Xi = \beta_\mu, \sigma_0^2, \) and \(\lambda \) are replaced by certain estimates such as \(\tilde{b}_\mu \) from (2.3a) to (2.3c) and \(\hat{\sigma}_0^2 \) from (2.5b). How a proper estimate can be found for the “Tykhonov parameter” \(\lambda \), must be left to a future paper.

4. Conclusions and outlook

In this contribution the Penalized TLS approach within an EIV-Model has been compared with the “Bayesian” TLS approach within an EIV-Model with prior information, also known as “TLS-Collocation.” Surprisingly, both results turn out to be numerically identical under the mild matrix identity (3.2). They are not fully identical, however, since they have different MSE-risks associated with them. In fact, a criterion could be given that allows to decide which solution is superior over the other. This criterion proves to be essentially the same as the one developed by Schaffrin (2008) to compare the MSE-risk of the Penalized Least-Squares solution within a Gauss-Markov Model with the “Bayesian” Least-Squares solution within a Random Effects Model, i.e., the “LS-Collocation” solution. A quasi-optimal estimate of “Tykhonov’s regularization parameter,” needed for the Penalized TLS solution, will be presented in a future paper.

References