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Abstract 

Survey data often contain variables which are semicontinuous in nature, i.e. they either take a single fixed 

value (typically 0) or they have a continuous, often skewed, distribution on the positive real line. This type of 

variables is very common in agricultural, environmental, ecological, epidemiological and economic surveys. 

Standard methods for small area estimation based on the use of linear mixed models can be inefficient for 

such variables. We discuss small area estimation techniques for semicontinuous variable under a two part 

random effects model which takes care of presence of excess zeros as well as skewed nature of the non-zero 

values of the responses variable. Empirical results suggest that the proposed method works well and 

produces an efficient set of small area estimates. An application to real survey data from the Australian 

Agricultural Grazing Industry Survey demonstrates the satisfactory performance of the method. We also 

propose a parametric bootstrap method to estimate the mean squared error (MSE) of the proposed estimator 

of small areas. The bootstrap estimates of the MSE are compared to the true MSE in simulation study. 
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1. Introduction 

Many variables of interest in business and agricultural surveys are semicontinuous in nature. This article 

focuses on a particular type of semicontinuous variable frequently encountered in practice, a mixture of zeros 

and continuous skewed distributed positive values. Linear models are not appropriate for the semicontinuous 

variables. As a consequence, commonly used methods for small area estimation (SAE) based on the use of 

linear mixed models (LMMs), for example, the empirical best linear unbiased predictor (EBLUP) can be 

inefficient for such variables. Chandra and Chambers (2011a) and Berg and Chandra (2012) investigated 

SAE methods for skewed variables, focussing on those that follow a LMM following a logarithmic (log) 

transformation. Chandra and Chambers (2011a) described two predictors for SAE of skewed variables. The 

first predictor, a model-based direct estimator (MBDE) defined as a weighted sum of the sampled units, 

where the weights are defined to give the minimum mean squared error (MMSE) linear predictor of the 

population mean if the parameters of the LMM on log scale were known. The second predictor is based on 

prediction based approach of Karlberg (2000), that is, empirical predictor under a LMM on log scale. This 

empirical predictor is analogous to the synthetic estimator under a LMM. The MBDE is a direct estimator 

and unbiased in the presence of between area heterogeneity, but can yield unstable estimates if sample sizes 

are too small. On the other hand, the synthetic type empirical predictor only accounts for between area 

variability through the covariates and therefore can lead to biased estimates when heterogeneity exists 

between the areas. Berg and Chandra (2012) described an empirical best predictor in the sense that it has 

minimum MSE in the class of unbiased predictors. These approaches to SAE are suitable for skewed 

variables but their application is restricted to strictly positive variables only. Hence these approaches of SAE 

cannot be applied to a semicontinuous variable. Two part random effects model, also referred as a mixture 

model, is widely for SAE with zero-inflated variables, see for example, Pfeffermann et al. (2008) and 

Chandra and Sud (2012). We describe a SAE method for semicontinuous variables under a two part random 

effects model. We used a parametric bootstrap method to estimate the MSE of the proposed estimator of 

small areas.  
 

2. Small Area Estimation Under Mixture Model 

Let us consider a finite population U of size N which consists of D non-overlapping domains 

( 1,...., )
i
U i D  and from this finite population a sample of size n is drawn. We assume that there is a known 
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number Ni  of population units in small area i, with ni ( 1,...., )i D  of these sampled. The total number of 

units in the population is 
  
N  N

ii1

D

 , with corresponding total sample size 
  
n  n

ii1

D

 . We use s to 

denote the collection of units in sample, with si  the subset drawn from small area i, and use expressions like 

j i  and j s  to refer to the units making up small area i and sample s respectively. Similarly, ir  denote 

the set of j units in small area i that are not in sample, with | |i i ir N n   and i i iU s r  . Let 
ijy  denotes 

the values of variable of interest Y for the unit j in area i and ijx  denotes the ( 1)m  vector of values of 

auxiliary variables in area i associated with 
ijy . With this, the quantity of interest is the small area mean of Y, 

1

1




 

iN

i i ijj
m N y .  We consider a situation where the variable of interest follows a LMM on log 

transformation. Then we write a log scale LMM for the variable of interest, 
ijy , as  

log( ) T

ij ij ij i ijy  l   u  e   z         (1) 

where  1 ,log( )ij i ijz x  is the 1m  vector of appropriately transformed covariates,   is a 1m  vector of 

fixed effects, iu  is the area-specific random effect associated with area i and ije  is an individual level 

random errors for unit j in small area i with 
2 2( , ) ( , ( , )) 0i ij u eu e N diag . Let 

2 2( , )T

u e    be the 

vector of model parameters, and let 
2 2ˆˆ ˆ ˆ( , )T

u e    be the ML or REML estimator of  . In particular, 

2 2 2( , )T

u e   is referred to as the variance components of the model and 
2 2 2ˆ ˆ ˆ( , )T

u e  denote the 

estimator of 
2 . Given the sample data, we can estimate the unknown parameters (including the area effect) 

of model (1) and hence define the log-scale predictions as ˆ ˆ ˆT

ij ij il u z  , where ̂  is the estimates of  , and 

ˆˆˆ ( )T

i i is isu l  z   is the predictor of random area effect, where 
2 2 1 2 1ˆ ˆ ˆ ˆ( )i u u i en       is the estimated 

shrinkage effect i . Here, 
1 log( )

i
is i ijj s
l n y


   and 

1

i
is i ijj s

n


 z z  are the sample means of ijl  and 

ijz  respectively in area i. With this using a prediction-based approach similar to the Karlberg (2000), under 

model (1) a synthetic type predictor for the area mean im  is given by (Chandra and Chambers, 2011a)  

 1ˆ ˆ
i i

SYN EP SYN EP

i i ij ijs r
m N y y          (2) 

where    2 2 2 2ˆ ˆˆ ˆˆ ˆ ˆ ˆ ˆexp 0.5 0.5 ( ) 0.25 ( )SYN EP T T

ij ij u e ij ij u ey V V         z z z  .  

Chandra and Chambers (2011a) described a model-based direct estimator of the form 
i

ij ijj s
w y

 , where 

ijw  is an estimator of the weight that gives the BLUP of the population mean if the parameters of the model 

(1) are known. To derive the predictor, Chandra and Chambers (2011a), use the approximation,  

0 1
ˆ( ) SYN EP

ij ijE y y    , and      (3) 

  2 2 2ˆ ˆ ˆ ˆ ˆ( , ) exp( ) 1 exp( ) exp( ) 1 [ ]SYN EP SYN EP

ij ik ij ik u u eCov y y y y I j k        ,  (4) 

where ˆ SYN EP

ijy 
 is given in (2). Let us denote by ( , )T T T

U s ry y y , where sy  and ry  are the vectors of 

sampled and non-sampled units of Y respectively. Similarly, we define ˆ SYN EP

s


y  and ˆ SYN EP

r


y  as vectors 
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containing ˆ SYN EP

ijy 
 for the sampled and non-sampled units and then ( , )T T T

U s rJ J J  

 ˆ ˆ( , ) , (( ) , ( ) )T T T SYN EP T SYN EP T T

s r s r

  1 1 y y . For known parameters, model given in (3) and (4) is a linear 

model for the mean of
ijy  and then the BLUP of population mean of Y is given by 

1 T

s sN 
w y , with weights  

1( ; ) ( ) ( )T T T T T

j s s U U s s s s s ss sr rw j s       w 1 H J 1 J 1 I H J V V 1 ,   (5) 

where 
1 1 1( )T T

s s s ss s s ss

  H J V J J V . Clearly, these weights are calibrated since 
jj s

w N


  and 

ˆ ˆ
j j jj s j U

w y y
 

  . The model-based direct estimator of the small area mean, im  is 

_1ˆ
i

CC

i i ij ijj s
m N w y


  ,      (6) 

where ijw  is the element of weight w  associated with unit (i,j) and given by (5). Under (1), following Berg 

and Chandra (2012), the minimum mean squared error (MMSE) predictor for im  is given by  

 1ˆ ˆ
i i

EBP EBP

i i ij ijs r
m N y y        (7) 

where   2 1ˆ ˆˆ ˆˆ ˆexp 0.5 (1 )EBP T T

ij ij i is ij e i iy l n      z z  . We used Taylor linear approximation to obtain 

this bias correction due to back transformation. Then a bias corrected version of predictor (7) is   

 1ˆ ˆ
i i

EBP BC EBP BC

i i ij ijs r
m N y y     ,     (8) 

where     2 1

1 2 3

1ˆ ˆˆ ˆˆ ˆ ˆ ˆ ˆexp 0.5 (1 ) 2
2

EBP BC T T

ij ij i is ij e i i ij i i iy l n c c c    
         

 
z z a   with,  

    ˆˆˆ ˆ( )
T

T T T T

ij ij i is ij i isV   a z z z z . See Berg and Chandra (2012) for the details of 1îc , 2îc  and 3îc . 

Let us suppose that the response variable ijy  is a semicontinuous variable. We then describe an approach 

based on two part random effects model (also referred as a mixture model) to model this type of variables. 

Following the ideas of Olsen and Schafer (2001), Pfeffermann et al. (2008), Chandra and Chambers (2011b) 

and Chandra and Sud (2012), we express a semicontinuous variable ij ij ijy y  as a product of two 

components. Here, first component ijy  is referred to as log-linear component of ijy  and assume to follow a 

linear mixed model on log transformed scale, like (1). Second component  0ij ijI y   , is a binary (0/1) 

variable, assume to follow a generalized linear mixed model (GLMM) with logit link function, i.e. a logistic 

linear mixed model, referred as the logistic component of ijy . The logarithmic component ijy  is positively 

skewed and follows a linear mixed model on log scale similar to (1). The proposed mixture model based 

approach of SAE is implemented in three steps. First a linear mixed model is fitted for positive (non-zero) 

skewed values of the response variable on logarithmic transform scale and then in the second step a logistic 

linear mixed model is fitted for probability of the positive values. Finally, the two models are combined at 
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estimation stage. Chandra and Chambers (2011b) used a similar mixture model for SAE of the zero-inflated 

skewed data. However, they adopted this approach to derive the sample weights via ‘fitted value’ model and 

to define the MBDE estimator for small area means (Chandra and Chambers, 2009). They also described the 

MSE estimation of the proposed MBDE estimator. The proposed approach of SAE is an indirect method and 

hence it is expected to be efficient even for the areas for which only small samples data are available.  

 

For the logistic component, the model linking the probability ijp  of positive values with the covariates is a 

logistic linear mixed model in area i of the form  

 log ( ) ln / (1 ) T

ij ij ij ij ij iit p p p  v    x  ( 1,..., )i D    (9) 

with    
11

exp( ) 1 exp( ) exp( ) 1 exp( )T T

ij ij ij ij i ij ip  v  v 


      x x . Here   is a vector of unknown 

fixed effects parameters and iv is the random area effect associated with area i, assumed to have a normal 

distribution with zero mean and constant variance. The estimation of unknown parameters of the logistic 

component was followed from the procedure described in Manteiga et al. (2007). In particular, we used an 

iterative procedure that combines the Penalized Quasi-Likelihood (PQL) estimation of   and iv  with REML 

estimation of the variance component parameters. The estimation procedure was implemented in statistical 

software R. Using the estimated values, the predicted probabilities of the logistic component are obtained as:  

 
1

ˆ ˆˆ ˆ ˆexp( ) 1 exp( )T T

ij ij i ij ip  v  v


   x x    (10) 

In order to estimate the parameters of the second component, we denote by  , 0js j s y     the subset 

of the sample for which the response variable is non-zeros and have a skewed distribution, and 

jj s
n  

  denotes the number of non-zeros sample units. Accordingly, we use a sub script of ‘+’ to 

denote the quantity associated with the non-zeros sample units s of size n . Using the sample data s , we 

the fit model (1) to obtain the estimate of fixed effect parameters and the prediction of random effects. 

Further we use a ‘+’ to denote the parameter estimates based on sample s of size n .  

 

The predicted values of ijy , that is, the linear component of ijy  can be obtained using expression (2) or (8). 

Further, we see that  ( )ij ij ijE y p  , where ( | 1).ij ij ijE y    Here we have the two parts, first for the 

probabilities of positive values of the response variable and second for the individual with positive value. 

Recall that we assume negligible correlations between the random effects in the two part of the model. In 

context of small area prediction problem, empirical evidence reported in Pfeffermann et al. (2008), Chandra 

and Chambers (2011b) and references therein clearly shows that this is a reasonable assumption. As a 

consequence, ij  and ijp  are assumed to be uncorrelated (or have negligible correlation). Using the 

estimated values of the parameters lead to plug-in predicted values of ijy  as ˆ ˆ ˆ( )  ij ij ijE y p  , where ˆ
ijp  is 

given by (10), whereas ˆˆ ˆ( | )ij ij ijE y   is defined by (2) and (8) as ˆ MixEP

ij  and ˆ MixMMSE

ij  respectively.  

These two mixture model based indirect estimators are denoted by MixEP and MixEBP respectively. We 

used a bootstrap procedure of MSE estimation of these two estimators, i.e. MixEP and MixEBP. We further 

note that  ˆ( ) ( ).ij ijE E y E y  Linear mixed model based EBLUP is denoted by LinEBLUP while the 

mixture model based MBDE estimator is denoted by MixMBDE. 
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3. Results from Simulation Studies 

We used model-based simulation to generate artificial population and sample data. We used two measures of 

the relative performance of the different SAE methods that were used in our simulations. These are the 

average percent relative bias (RB) and the average percent relative root mean squared error (RRMSE). In the 

simulation studies we choose a population size  ,N 00015 and a sample size 600 n   and then generated 

randomly ,  1,..., ;d dd
N d D N N   and ( / );d d dd

n N n N n n  . The average sizes of small area 

population and sample are 500 and 20 respectively with total of 30D   small areas. These are fixed for all 

simulations. We first generated population values of diy  1,..., ; 1,...,di N d D   from a multiplicative 

model 1

di o di d diy x u e  with 5.0o  , 1 0.5   and then created zero values for diy  randomly. The unit 

level random errors die  are independently generated from a lognormal distribution, LN (0, 0.5e  ). The 

random area effects du  are generated from LN (0, 0.3u  ). The covariate values dix  are generated from 

LN (2, 3x  ). From this model, values of the diy  (that contains zeros values as well) are generated for 

30D   small areas of sizes Nd and then random samples of sizes nd are drawn from each area. In our 

simulations, we created data with p= 0.50, 0.70 and 0.90 for all small areas at population level. Here p is 

proportion of positive values defined as total number of positive values in the population divided by total 

number of values in the population. The simulation runs were replicated K=1000 times and for each sets and 

in every simulation the values of small area estimates were calculated using different SAE methods 

described in previous Sections. Results from these simulations are reported in Table 1. For estimating the 

MSE using bootstrap method in each simulation run B=500 bootstrap samples were generated and the small 

area estimates were calculated and then the MSE estimates were computed. The related results for the MSE 

estimation, that is, the averages over the small areas of the true RMSEs (AvTRMSE) and the estimated 

RMSEs (AvERMSE), the average percentage relative bias (AvRB) and the average percentage coverage rates 

of nominal 95 percent confidence intervals (AvCR) of MSE estimators of different estimators are calculated. 

 

Two things standout from the values of percentage average relative biases (AvRB) reprted in Table 1, first the 

LinEBLUP is highly biased and the biases are singnificantly greater than all the mixture model based SAE 

methods (i.e., MixEBP, MixEP and MixMBDE). This clearly reveals that the LinEBLUP is not suitable for 

semicontinuous data. Second, among the mixture model based SAE methods, the biases of MixEBP are 

smaller than both MixMBDE and MixEP. With the increase in proportion of zeros, the average relative biases 

increases for all the methods. Turning to the values of percentage AvRRMSE, again with the larger area 

specific proportion of zeros the percentage AvRRMSE of all the methods increases. Again we see that the 

LinEBLUP has very large values of AvRRMSEs as compared to the mixture model based methods. Among 

the mixture model based methods, the MixEBP dominates the other methods. Overall, the proposed MixEBP 

has both smaller bias and high efficiency. The proposed predictor under a two part random effect model 

(MixEBP) offers substantial bias and efficiency gains over the other predictors when the study variable is 

semicontinuous. In this case, the LinEBLUP is not recommneded to be used in practcie since it is very 
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ustable with huge biases. In costrast, the propsoed mixture model based SAE method particualrly the 

MixEBP has proven to be a good method for such data. The actual coverage rates of nominal 95 percent 

confidence intervals achieved by the bootstrap MSE estimators of MixEBP and MixEP are 95 percent. This 

good performance is also confirmed by the results that the area averages of the true RMSEs and the estimated 

RMSEs obtained using bootstrap MSE estimator are very close. Overall, the bootstrap MSE estimator for the 

MixEBP approximates the true MSE very well and with a good coverage property.  
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Table 1. Percentage average relative bias (AvRB) and percentage average relative RMSE (AvRRMSE) of 

different estimators in model based simulations. 

p MixEBP MixEP MixMBDE LinEBLUP MixEBP MixEP MixMBDE LinEBLUP 

 

AvRB AvRRMSE 

0.9 0.50 1.11 0.68 13.06 15.07 31.03 18.98 77.88 

0.7 0.58 1.07 0.99 12.42 19.39 32.86 26.96 77.83 

0.5 0.75 1.22 1.12 13.95 24.65 35.61 36.83 96.90 
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