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Abstract

Detecting objects from noisy data-sets is common practice in astrophysics. Ob-
ject detection presents a particular challenge in terms of statistical inference, not
only because of its multi-modal nature but also because it combines both the pa-
rameter estimation (for characterizing objects) and modelselection problems (in
order to quantify the detection). Bayesian inference provides a mathematically rig-
orous solution to this problem by calculating marginal posterior probabilities of
models with different number of objects, but the use of this method in astrophysics
has been hampered by the computational cost of evaluating the Bayesian evidence.
Nonetheless, Bayesian model selection has the potential toimprove the interpre-
tation of existing observational data. In this work we discuss several Bayesian
approaches to object detection problems and describe how the statistical inference
on them can be done in an efficient and robust manner. We also describe some re-
cent applications of Bayesian object detection to problemslike galaxy cluster and
extra-solar planet detection. These approaches are generic in nature and may there-
fore be applied beyond astrophysics.
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1 Introduction

Identification and characterisation of discrete objects immersed in some general back-
ground of diffuse signal, instrumental noise or systematiceffects, is a long-standing
problem in astrophysics. Bayesian inference provides an elegant solution for detecting
and characterising all the objects in an image simultaneously by exploring the joint pos-
terior distribution of all the parameters in the model used to describe them. Bayesian
inference also provides a rigorous way of performing model selection required to de-
termine the number of objects favoured by the data. The main problem in applying
such Bayesian model selection techniques is the computational cost involved in calcu-
lating the Bayesian evidence. However, recent advances in Markov-Chain Monte Carlo
(MCMC) techniques have made it possible for Bayesian techniques to be applied to as-
trophysical object detection. In this paper, we present several approaches for performing
objection detection and review a few applications of these approaches in astrophysics.

2 Bayesian inference

Bayesian inference provides a consistent approach to the estimation of a set of parame-
tersΘ in a model (or hypothesis)H for the dataD. Bayes’ theorem states that

Pr(Θ|D,H) =
Pr(D|Θ,H)Pr(Θ|H)

Pr(D|H)
, (1)

where Pr(Θ|D,H)≡ P(Θ|D) is the posterior probability distribution of the parameters,
Pr(D|Θ,H)≡ L (Θ) is the likelihood, Pr(Θ|H)≡ π(Θ) is the prior, and Pr(D|H)≡ Z is
the Bayesian evidence given by:

Z =

∫
L (Θ)π(Θ)dNΘ, (2)
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whereN is the dimensionality of the parameter space. Bayesian evidence being indepen-
dent of the parameters, can be ignored in parameter estimation problems and inferences
can be obtained by taking samples from the (unnormalized) posterior distribution using
standard MCMC methods.

Model selection between two competing modelsH0 andH1 can be done by compar-
ing their respective posterior probabilities given the observed data-setD, as follows

R=
Pr(H1|D)

Pr(H0|D)
=

Pr(D|H1)Pr(H1)

Pr(D|H0)Pr(H0)
=
Z1

Z0

Pr(H1)

Pr(H0)
, (3)

where Pr(H1)/Pr(H0) is the prior probability ratio for the two models, which can often
be set to unity in situations where there is not a prior reasonfor preferring one model over
the other, but occasionally requires further consideration. It can be seen from Eq. (3) that
the Bayesian evidence plays a central role in Bayesian modelselection.

As the average of the likelihood over the prior, the evidenceis larger for a model
if more of its parameter space is likely and smaller for a model with large areas in its
parameter space having low likelihood values, even if the likelihood function is very
highly peaked. Thus, the evidence automatically implements Occam’s razor.

Evaluation of the multidimensional integral in Eq. (2) is a challenging numerical
task. Standard techniques like thermodynamic integrationare extremely computation-
ally expensive which makes evidence evaluation at least an order of magnitude more
costly than parameter estimation. Various alternative information criteria for astrophys-
ical model selection are discussed by Liddle (2007), but theevidence remains the pre-
ferred method.

The nested sampling approach, introduced by Skilling (2004), is a Monte Carlo
method targeted at the efficient calculation of the evidence, but also produces poste-
rior inferences as a by-product. Feroz & Hobson (2008) and Feroz et al. (2009) built on
this nested sampling framework and have introduced theMultiNest algorithm which is
very efficient in sampling from posteriors that may contain multiple modes and/or large
(curving) degeneracies and also calculates the evidence. This technique has greatly re-
duces the computational cost of Bayesian parameter estimation and model selection and
has already been applied to several object detection problems in astrophysics (see e.g.
Feroz et al. 2008, 2009a,b).

3 Bayesian Object Detection

To detect and characterise an unknown number of objects in a dataset, one would ideally
like to infer simultaneously the full set of parametersΘ = {Nobj,Θ1,Θ2, · · · ,ΘNobj,Θn},
whereNobj is the (unknown) number of objects,Θi are the parameters values associated
with the ith object, andΘn is the set of (nuisance) parameters common to all the objects.
This however requires any sampling based approach to move between spaces of different
dimensionality as the length of the parameter vector depends on the unknown value of
Nob j. Such techniques are discussed in Hobson & McLachlan (2003)and Brewer et al.
(2012). Nevertheless, due to this additional complexity ofvariable dimensionality, these
techniques are generally extremely computationally intensive.

An alternative approach for achieving virtually the same result is the ‘multiple source
model’. By considering aseriesof modelsHNobj, each with afixednumber of objects,
i.e. withNobj = 0,1,2, . . .. One then infersNobsby identifying the model with the largest
marginal posterior probability Pr(HNobj|D). Assuming that there arenp parameters per
object andnn (nuisance) parameters common to all the objects, forNobj objects, there
would beNobjnp+nn parameters to be inferred, Along with this increase in dimension-
ality, the complexity of the problem also increases withNobj due to exponential increase
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in the number of modes as a result of counting degeneracy (there aren! more modes for
Nobj = n than forNobj = 1).

If the contributions to the data from each object are reasonably well separated and the
correlations between parameters across objects is minimal, one can use the alternative
approach of ‘single source model’ by settingNobj= 1 and therefore the model for the data
consists of only a single object. This does not, however, restrict us to detecting only one
object in the data. By modelling the data in such a way, we would expect the posterior
distribution to possess numerous peaks, each corresponding to the location of one of
the objects. Consequently the high dimensionality of the problem is traded with high
multi-modality in this approach, which, depending on the statistical method employed
for exploring the parameter space, could potentially simplify the problem enormously.
For an application of this approach in detecting galaxy cluster from weak lensing data-
sets see Feroz et al. (2008).

Calculating Bayesian evidence accurately for large numberof objects is extremely
difficult, due to increase in dimensionality and severe complexity of the posterior, how-
ever, parameter estimation can still be done accurately. Inorder to circumvent this prob-
lem, Feroz et al. (2011b) proposed a new general approach to Bayesian object detection
called ‘residual data model’ that is applicable even for systems with a large number of
planets. This method is based on the analysis of residual data after detection ofNobj

objects. We summarize this method as follows:
Let HNobj denote a model withNobj objects. The observed (fixed) data is denoted by

D = {d1,d2, · · · ,dM}, with the associated uncertainties being{σ1,σ2, · · · ,σM}. In the
general case thatNobj = n, the random variableDn is defined as the data that would be
collected if the modelHn were correct, and the random variableRn ≡ D−Dn, as the
data residuals in this case. If we setNobj = n and analyseD to obtain samples from
the posterior distribution of the model parametersΘ from which it is straightforward to
obtain samples from the posterior distribution of the data residualsRn. This is given by:

P(Rn|D,Hn) =
∫

P(Rn|Θ,Hn)P(Θ|D,Hn)dΘ, (4)

where

P(Rn|Θ,Hn) =
M

∏
i=1

1
√

2πσ2
i

exp

{

−
[Di −Ri −Dp,i(Θ)]2

2σ2
i

}

, (5)

and Dp(Θ) is the (noiseless) predicted data-set corresponding to theparameter val-
uesΘ. Assuming that the residuals are independently Gaussian distributed with mean
〈Rn〉= {r1, r2, · · · , rM} and standard deviations{σ′

1,σ′
2, · · · ,σ′

M} obtained from the pos-
terior samples,〈Rn〉 can then be analysed withNobj = 0, giving the ‘residual null evi-
dence’Zr,0, which is compared with the evidence valueZr,1 obtained by analysing〈Rn〉
with Nobj = 1. The comparison is thus being made between the modelH0 that the resid-
ual data does not contain an additional object and the modelH1 in which an additional
object is favoured.

With no prior information about the number of objects in a data-set, the original
data-setD is analysed withNobj = 1. If, in the analysis of the corresponding residuals
data,H1 is favoured overH0, then the original dataD are analysed withNobj = 2 and the
same process is repeated. In this way,Nobj is increased in the analysis of the original data
D, until H0 is favoured overH1 in the analysis of the corresponding residual data. The
resulting value forNobj gives the number of objects favoured by the data. This approach
thus requires the detection and estimation of orbital parameters forNobj = n model but
Bayesian evidence only needs to be calculated forNobj = 1 model (and theNobj = 0
model, which is trivial); this reduces the computational cost of the problem significantly.
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4 Applications of Bayesian Object Detection in Astrophysics

4.1 Modelling of Galaxy Clusters

Clusters of galaxies are the most massive gravitationally bound objects in the universe
and, as such, are critical tracers of the formation of large-scale structure. The number
counts of clusters as a function of their mass and redshift have been predicted both an-
alytically (see e.g. Press & Schechter 1974) and from large scale numerical simulations
(see e.g. Jenkins et al. 2001), and are particularly sensitive to the cosmological param-
etersσ8 (amplitude of power spectrum on the scale 8h−1Mpc) andΩm (matter density
normalized to critical density) (see e.g. Battye & Weller 2003).

4.1.1 SZ Effect

The SZ effect (Sunyaev & Zeldovich 1970, 1972) produces secondary anisotropies in
the cosmic microwave background (CMB) radiation through inverse-Compton scattering
from the electrons in the hot intracluster gas (which radiates via thermal Bremsstrahlung
in the X-ray waveband), and the subsequent transfer of some of the energy of the elec-
trons to the low-energy photons. Apart from the receiver noise, there are numerous
other sources of noise in SZ observations, including the primordial CMB which can
mimic galaxy clusters, resolved and unresolved radio sources. The presence of these
noise components make analysis of SZ observations quite challenging as one is not only
required to characterize any galaxy clusters present, but also to quantify its detection.

Feroz et al. (2009a) presented a Bayesian approach to modelling galaxy clusters
using multi-frequency observations from telescopes that exploit the SZ effect using
MultiNest to explore the high-dimensional parameter spaces and also to calculate the
Bayesian evidence. By performing tests on simulated Arcminute Microkelvin Imager
(AMI; AMI Consortium: Zwart et al. 2008) observations of a cluster in the presence
of primary CMB signal, radio point sources (detected as wellas an unresolved back-
ground) and receiver noise, they showed that the algorithm is able to analyse jointly
the data from six frequency channels, sample the posterior space of the model and cal-
culate the Bayesian evidence very efficiently. This technique has since been used in
several studies of real SZ observations (see e.g. Zwart et al. 2011; AMI Consortium:
Rodriguez-Gonzalvez et al. 2011) and has also resulted in the discovery of previously
unknown galaxy clusters (see e.g. AMI Consortium: Shimwellet al. 2012).

4.1.2 Weak Gravitational Lensing

Observations of galaxy clusters through gravitational lensing exploit the fact that the
spacetime around a massive object is curved, and as a result light rays from a back-
ground source (e.g. galaxies), propagating through the spacetime are bent. This results
in magnification and distortion of the images of background sources. Gravitational lens-
ing is classified as ‘strong’ when these distortions are easily visible, and ‘weak’ when
they are much smaller and can only be studied by averaging over large number of back-
ground sources. A cluster mass distribution is investigated using weak gravitational
lensing through the relationship〈ε(x)〉= g(x), that is, at any pointx on the sky, the local
average of the complex ellipticitiesε = ε1 + iε2 of a collection of background galaxy
images is an unbiased estimator of the local complex reducedshear field,g= g1+ ig2,
due to the cluster.

The quantification of cluster detection is extremely important in weak lensing anal-
yses as despite the advances in data quality, the weak lensing data remains very sparse
and noisy. By adopting the ‘single source model’ (see Sec. 3), and usingMultiNest to
explore the highly multi-modal parameter space, Feroz et al. (2008) analysed simulated
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Figure 1: Galaxy cluster detection from weak gravitationallensing observations. Left
panel shows the true convergence (projected mass density) map of the simulated clus-
ters discussed in Section 3.1 of (Feroz et al., 2008). Middlepanel shows the denoised
convergence map made with the LenEnt2 algorithm. Right panel shows the inferred
convergence map made with theMultiNest algorithm.

wide field weak lensing data with hundreds of clusters and extracted many potential
galaxy clusters as well as calculated the probability odds for each detected cluster being
‘true’. An example of reconstructed mass map from simulatedweak lensing observa-
tions using this technique is shown in Fig. 1.

An important feature of using the Bayesian model selection for quantifying cluster
detection is that it gives the probability distribution of detected clusters being ‘true’.
Once the ratioRi of the probabilities of theith detected clusters being ‘true’ and ‘false’
has been calculated as given in Eq. (3), the probabilitypi , of this cluster being ‘true’
can then be calculated aspi = Ri/(1+Ri). Given a ‘threshold probability’pth, defined
such that detected clusters withpi ≥ pth are identified as candidate clusters, the expected
number offalse positives, n̂FP can then be calculated as,

n̂FP=
k

∑
i=1,pi≥pth

(1− pi), (6)

wherek is total number of detected clusters. The expected ‘purity’, defined as the frac-
tion of the cluster candidates that are expected to be ‘true’can be similarly calculated.
The choice ofpth would depend on the application. See Feroz et al. (2008) and Karpenka
et al. (2013) for examples of such analyses.

4.2 Exoplanetary Searches

Exoplanetary research has made great advances in the last decade as a result of the data
gathered by several ground and space based telescopes and sofar more than 800 exoplan-
ets have been discovered. One of the most successful methodsfor detecting exoplanets is
the so-called ‘Radial Velocity’ (RV) method. The gravitational force between the planets
and their host star results in the planets and star revolvingaround their common centre of
mass. This produces doppler shifts in the spectrum of the host star according to its RV,
the velocity along the line-of-sight to the observer. Several such measurements, usually
over an extended period of time, can then be used to detect extrasolar planets.

Feroz et al. (2011a) adopted the ‘multiple source model’ (see Sec. 3) to determine
the number of companions orbiting star HIP 5158. By analysing high-precision RV
measurements of HIP 5158, they found conclusive evidence for the presence of two
companions and estimated their orbital parameters. Owing to the large uncertainty on
the mass of the second companion, they were unable to determine whether it is a planet
or a brown dwarf. They also analysed a three-companion model, but found it to bee8

times less probable than the two-companion model.
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For systems with 4 or more planets, calculating Bayesian evidence accurately is ex-
tremely difficult, however, parameter estimation can stillbe done accurately. Adopting
the ‘residual data model’ (see Sec. 3), Feroz et al. (2011b) analysed the RV measure-
ments of HD 10180 usingMultiNest. RV analysis of HD 10180 by Lovis et al. (2011)
reported at least five and as many as seven planets orbiting this star. Feroz et al. (2011b)
found strong evidence for the presence of six planets orbiting HD 10180 and although
their analysis of the residual data of the 6-planet model didreveal several peaks in the
posterior distribution with periods around 6.51 and 1 days,they were not found to be
sufficiently significant (residual data after detection of 6planets favouring an additional
planet over no additional planets only by a factore−0.7). They therefore ruled out the
presence of a ‘detectable’ seventh planet in the data.

5 Conclusions

With the availability of vast amounts of high quality data, statistical inference is increas-
ingly playing an important role in astrophysics. MCMC techniques and algorithms based
on nested sampling have been employed successfully in the detection of different classes
of astrophysical objects. We have given a short introduction to Bayesian object detection
and reviewed some of its applications in astrophysics. Withthe forthcoming data from
future missions, there will be no doubt many more exciting areas of research which will
foster further development of this inter-disciplinary field.
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