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Abstract

Detecting objects from noisy data-sets is common praatiesirophysics. Ob-
ject detection presents a particular challenge in termgatistical inference, not
only because of its multi-modal nature but also becausenitbioes both the pa-
rameter estimation (for characterizing objects) and medkdction problems (in
order to quantify the detection). Bayesian inference mtesia mathematically rig-
orous solution to this problem by calculating marginal pdst probabilities of
models with different number of objects, but the use of thithnod in astrophysics
has been hampered by the computational cost of evaluaggapesian evidence.
Nonetheless, Bayesian model selection has the potentialgmove the interpre-
tation of existing observational data. In this work we dssiseveral Bayesian
approaches to object detection problems and describe heostdlistical inference
on them can be done in an efficient and robust manner. We atswibe some re-
cent applications of Bayesian object detection to probli#eggalaxy cluster and
extra-solar planet detection. These approaches are gémagdture and may there-
fore be applied beyond astrophysics.
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1 Introduction

Identification and characterisation of discrete objectmarsed in some general back-
ground of diffuse signal, instrumental noise or systemaffects, is a long-standing
problem in astrophysics. Bayesian inference provides egeelt solution for detecting
and characterising all the objects in an image simultarigdaysexploring the joint pos-
terior distribution of all the parameters in the model usedi¢scribe them. Bayesian
inference also provides a rigorous way of performing moeéé&dion required to de-
termine the number of objects favoured by the data. The mahlgm in applying
such Bayesian model selection techniques is the compughtemst involved in calcu-
lating the Bayesian evidence. However, recent advancesady-Chain Monte Carlo
(MCMC) techniques have made it possible for Bayesian teglas to be applied to as-
trophysical object detection. In this paper, we presengrsdapproaches for performing
objection detection and review a few applications of thggg@aches in astrophysics.

2 Bayesian inference

Bayesian inference provides a consistent approach to timagi®n of a set of parame-
ters® in a model (or hypothesid) for the dataD. Bayes' theorem states that

Pr(D|©,H)Pr(®|H)

Pr(D|H) ’
where P(©|D,H) = P(©|D) is the posterior probability distribution of the paramster
Pr(D|®,H) = £(0) is the likelihood, Pf®|H) = 1(©) is the prior, and RD|H) = z is
the Bayesian evidence given by:

Pr(©|D,H) =

(1)
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whereN is the dimensionality of the parameter space. Bayesiareei&lbeing indepen-
dent of the parameters, can be ignored in parameter estim@atbblems and inferences
can be obtained by taking samples from the (unnormalizesfepior distribution using
standard MCMC methods.

Model selection between two competing modeégsandH; can be done by compar-
ing their respective posterior probabilities given theevbsd data-sdD, as follows

_ Pr(HyJD) _ Pr(D|H1)Pr(H1)  z1 Pr(Hy)
" Pr(Ho|D) ~ Pr(D|Ho)Pr(Ho) ~ 2o Pr(Ho)’

®3)

where P(H1)/Pr(Ho) is the prior probability ratio for the two models, which céiten
be set to unity in situations where there is not a prior redsopreferring one model over
the other, but occasionally requires further considemnatibcan be seen from Eq. (3) that
the Bayesian evidence plays a central role in Bayesian nsatettion.

As the average of the likelihood over the prior, the evideisclarger for a model
if more of its parameter space is likely and smaller for a nhedth large areas in its
parameter space having low likelihood values, even if tkeliiood function is very
highly peaked. Thus, the evidence automatically implesi@ucam’s razor.

Evaluation of the multidimensional integral in Eq. (2) is l@altenging numerical
task. Standard techniques like thermodynamic integrati@nextremely computation-
ally expensive which makes evidence evaluation at leastrder f magnitude more
costly than parameter estimation. Various alternativerinftion criteria for astrophys-
ical model selection are discussed by Liddle (2007), butetidence remains the pre-
ferred method.

The nested sampling approach, introduced by Skilling (20®4a Monte Carlo
method targeted at the efficient calculation of the evidehes also produces poste-
rior inferences as a by-product. Feroz & Hobson (2008) amdZ=et al. (2009) built on
this nested sampling framework and have introducedvthei Nest algorithm which is
very efficient in sampling from posteriors that may containltiple modes and/or large
(curving) degeneracies and also calculates the evidertus.tdchnique has greatly re-
duces the computational cost of Bayesian parameter egimeatd model selection and
has already been applied to several object detection pnsbie astrophysics (see e.g.
Feroz et al. 2008, 2009a,b).

3 Bayesian Object Detection

To detect and characterise an unknown number of objectsateaet, one would ideally
like to infer simultaneously the full set of paramet@s= {Nopj, O1,02,- - -, Ony; ©n},
whereNgy; is the (unknown) number of objectS; are the parameters values associated
with theith object, andd;, is the set of (nuisance) parameters common to all the objects
This however requires any sampling based approach to mowebe spaces of different
dimensionality as the length of the parameter vector dependhe unknown value of
Nobj. Such techniques are discussed in Hobson & McLachlan (2803)Brewer et al.
(2012). Nevertheless, due to this additional complexityasfable dimensionality, these
techniques are generally extremely computationally isiten

An alternative approach for achieving virtually the sanwmiles the ‘multiple source
model’. By considering aeriesof modelsHy,,, each with aixednumber of objects,
i.e. WithNop; = 0,1,2,.... One then inferdgyps by identifying the model with the largest
marginal posterior probability P, [D). Assuming that there ang, parameters per
object andn, (nuisance) parameters common to all the objectsNfgy objects, there
would beNgpjnp + Ny, parameters to be inferred, Along with this increase in disiam
ality, the complexity of the problem also increases Wtlg; due to exponential increase
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in the number of modes as a result of counting degeneracse(étren! more modes for
Nobj = n than forNgp; = 1).

If the contributions to the data from each object are reasdgneell separated and the
correlations between parameters across objects is minanalcan use the alternative
approach of ‘single source model’ by settiNg,; = 1 and therefore the model for the data
consists of only a single object. This does not, howevetricesis to detecting only one
object in the data. By modelling the data in such a way, we diedpect the posterior
distribution to possess numerous peaks, each corresgptalithe location of one of
the objects. Consequently the high dimensionality of thablem is traded with high
multi-modality in this approach, which, depending on tretistical method employed
for exploring the parameter space, could potentially sifpphe problem enormously.
For an application of this approach in detecting galaxyteluBom weak lensing data-
sets see Feroz et al. (2008).

Calculating Bayesian evidence accurately for large nurobebjects is extremely
difficult, due to increase in dimensionality and severe dexity of the posterior, how-
ever, parameter estimation can still be done accuratelyrder to circumvent this prob-
lem, Feroz et al. (2011b) proposed a new general approacayesin object detection
called ‘residual data model’ that is applicable even fotays with a large number of
planets. This method is based on the analysis of residual aftdr detection oNyp;
objects. We summarize this method as follows:

Let Hn,,, denote a model witiNop; objects. The observed (fixed) data is denoted by
D = {di,d,---,dw }, with the associated uncertainties beifm,0>,---,0m}. In the
general case thaop; = n, the random variabl®; is defined as the data that would be
collected if the modeH,, were correct, and the random varialitg = D — D, as the
data residuals in this case. If we $d§y; = n and analyseé to obtain samples from
the posterior distribution of the model paramet®rgom which it is straightforward to
obtain samples from the posterior distribution of the detdualsR,,. This is given by:

P(Ro|D,Hn) = [ P(R1|©, H)P(@ID, Ho) O, (@)
h
o 0, Hn) exp{— D1 =R~ Dyi(O)F } (5)
o l_l \/ 2107 207 ’

and Dy(©) is the (noiseless) predicted data-set corresponding tganemeter val-
ues®. Assuming that the residuals are independently Gausssnbdited with mean
(Rn) ={ra,rz,---,rm} and standard deviatioq®’,05, - --,0}, } obtained from the pos-
terior samples{R,) can then be analysed witlyp; = 0, giving the ‘residual null evi-
dence’Z o, which is compared with the evidence valfig obtained by analysingR,)
with Nopj = 1. The comparison is thus being made between the nidgitdat the resid-
ual data does not contain an additional object and the méd@&i which an additional
object is favoured.

With no prior information about the number of objects in aadsét, the original
data-seD is analysed witfNqp; = 1. If, in the analysis of the corresponding residuals
data,H; is favoured oveHo, then the original dat® are analysed withop; = 2 and the
same process is repeated. In this Wy, is increased in the analysis of the original data
D, until Hp is favoured oveH; in the analysis of the corresponding residual data. The
resulting value folNop; gives the number of objects favoured by the data. This approa
thus requires the detection and estimation of orbital patars forNy,; = n model but
Bayesian evidence only needs to be calculated\tgy = 1 model (and theNg,; = O
model, which is trivial); this reduces the computationataaf the problem significantly.
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4 Applications of Bayesian Object Detection in Astrophysics

4.1 Moddling of Galaxy Clusters

Clusters of galaxies are the most massive gravitationallynd objects in the universe
and, as such, are critical tracers of the formation of laggle structure. The number
counts of clusters as a function of their mass and redshit baen predicted both an-
alytically (see e.g. Press & Schechter 1974) and from lacgeesiumerical simulations
(see e.g. Jenkins et al. 2001), and are particularly semddithe cosmological param-
etersog (amplitude of power spectrum on the scale 8Vipc) andQ,, (matter density
normalized to critical density) (see e.g. Battye & WelleD2]

411 SZ Effect

The SZ effect (Sunyaev & Zeldovich 1970, 1972) produces rsgamy anisotropies in
the cosmic microwave background (CMB) radiation througlerse-Compton scattering
from the electrons in the hot intracluster gas (which radiaia thermal Bremsstrahlung
in the X-ray waveband), and the subsequent transfer of sditie @nergy of the elec-
trons to the low-energy photons. Apart from the receives@aothere are numerous
other sources of noise in SZ observations, including thengmilial CMB which can
mimic galaxy clusters, resolved and unresolved radio ssurdhe presence of these
noise components make analysis of SZ observations quitesang as one is not only
required to characterize any galaxy clusters present,Ibotaquantify its detection.

Feroz et al. (2009a) presented a Bayesian approach to rimgdghlaxy clusters
using multi-frequency observations from telescopes thatoit the SZ effect using
Mil ti Nest to explore the high-dimensional parameter spaces and @aisaldulate the
Bayesian evidence. By performing tests on simulated AraieitMicrokelvin Imager
(AMI; AMI Consortium: Zwart et al. 2008) observations of aister in the presence
of primary CMB signal, radio point sources (detected as aslln unresolved back-
ground) and receiver noise, they showed that the algorithable to analyse jointly
the data from six frequency channels, sample the postgramesof the model and cal-
culate the Bayesian evidence very efficiently. This teamitas since been used in
several studies of real SZ observations (see e.g. Zwart 20al; AMI Consortium:
Rodriguez-Gonzalvez et al. 2011) and has also resulteceinligtovery of previously
unknown galaxy clusters (see e.g. AMI Consortium: Shimwedl. 2012).

4.1.2 Weak Gravitational Lensing

Observations of galaxy clusters through gravitationakileg exploit the fact that the
spacetime around a massive object is curved, and as a riggulrdys from a back-
ground source (e.g. galaxies), propagating through theetipge are bent. This results
in magnification and distortion of the images of backgroungrses. Gravitational lens-
ing is classified as ‘strong’ when these distortions areleagsible, and ‘weak’ when
they are much smaller and can only be studied by averaginglarge number of back-
ground sources. A cluster mass distribution is investdjateing weak gravitational
lensing through the relationship(x)) = g(x), that is, at any poirt on the sky, the local
average of the complex ellipticities= €1 + i€, of a collection of background galaxy
images is an unbiased estimator of the local complex redslcedr fieldg = g1 + igo,
due to the cluster.

The quantification of cluster detection is extremely imaottin weak lensing anal-
yses as despite the advances in data quality, the weak dedata remains very sparse
and noisy. By adopting the ‘single source model’ (see Se@r8) usingwul ti Nest to
explore the highly multi-modal parameter space, Feroz.¢2AD8) analysed simulated
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Figure 1. Galaxy cluster detection from weak gravitatiolealsing observations. Left
panel shows the true convergence (projected mass density)ofrthe simulated clus-
ters discussed in Section 3.1 of (Feroz et al., 2008). Migdleel shows the denoised
convergence map made with the LenEnt2 algorithm. Right Ipsim@vs the inferred

convergence map made with thig t i Nest algorithm.

wide field weak lensing data with hundreds of clusters andaetéd many potential
galaxy clusters as well as calculated the probability oddeéch detected cluster being
‘true’. An example of reconstructed mass map from simulatedk lensing observa-
tions using this technique is shown in Fig. 1.

An important feature of using the Bayesian model selectmrgtiantifying cluster
detection is that it gives the probability distribution aftdcted clusters being ‘true’.
Once the ratidR; of the probabilities of thé" detected clusters being ‘true’ and ‘false’
has been calculated as given in Eq. (3), the probahgityof this cluster being ‘true’
can then be calculated @s= R /(1+ R)). Given a ‘threshold probabilitypy,, defined
such that detected clusters wigh> py, are identified as candidate clusters, the expected
number offalse positivesfirp can then be calculated as,

k
Arp= 5 (1-pi), (6)
i=1pi>ptn
wherek is total number of detected clusters. The expected ‘puritgfined as the frac-
tion of the cluster candidates that are expected to be ‘ttap’be similarly calculated.
The choice ofp, would depend on the application. See Feroz et al. (2008) anpdftka
et al. (2013) for examples of such analyses.

4.2 Exoplanetary Searches

Exoplanetary research has made great advances in the ¢astedas a result of the data
gathered by several ground and space based telescopesfantheece than 800 exoplan-
ets have been discovered. One of the most successful métnatitecting exoplanets is
the so-called ‘Radial Velocity’ (RV) method. The gravitatal force between the planets
and their host star results in the planets and star revolsiognd their common centre of
mass. This produces doppler shifts in the spectrum of thedtasaccording to its RV,
the velocity along the line-of-sight to the observer. Saveuch measurements, usually
over an extended period of time, can then be used to deteaeseldr planets.

Feroz et al. (2011a) adopted the ‘multiple source modek Sec. 3) to determine
the number of companions orbiting star HIP 5158. By anatysiigh-precision RV
measurements of HIP 5158, they found conclusive evidence¢hto presence of two
companions and estimated their orbital parameters. Owarbe large uncertainty on
the mass of the second companion, they were unable to degmtiether it is a planet
or a brown dwarf. They also analysed a three-companion mbdefound it to bec?
times less probable than the two-companion model.
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For systems with 4 or more planets, calculating Bayesiatleemie accurately is ex-
tremely difficult, however, parameter estimation can siéldone accurately. Adopting
the ‘residual data model’ (see Sec. 3), Feroz et al. (201dalyaed the RV measure-
ments of HD 10180 usinbul ti Nest . RV analysis of HD 10180 by Lovis et al. (2011)
reported at least five and as many as seven planets orbitggtén. Feroz et al. (2011b)
found strong evidence for the presence of six planets aghiiD 10180 and although
their analysis of the residual data of the 6-planet modelkeNgal several peaks in the
posterior distribution with periods around 6.51 and 1 dalysy were not found to be
sufficiently significant (residual data after detection gfi&nets favouring an additional
planet over no additional planets only by a factoP-’). They therefore ruled out the
presence of a ‘detectable’ seventh planet in the data.

5 Conclusions

With the availability of vast amounts of high quality datetsstical inference is increas-
ingly playing an important role in astrophysics. MCMC teithues and algorithms based
on nested sampling have been employed successfully in thetis of different classes
of astrophysical objects. We have given a short introdandiidBayesian object detection
and reviewed some of its applications in astrophysics. Withforthcoming data from

future missions, there will be no doubt many more excitirgparof research which will

foster further development of this inter-disciplinary diel
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