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Extended abstract

Due to the increasing availability of data sets with a large number of variables,
sparse model estimation is a topic of high importance in modern data analysis.
Sparse regression allows to improve prediction performance by variance reduction
and increase interpretability of the resulting models due to the smaller number of
explanatory variables. If the number of explanatory variables is larger than the num-
ber of observations, it is not even possible anymore to apply traditional methods
such as least squares due to the rank deficiency of the design matrix. Regulariza-
tion allows to overcome such computational difficulties. Appropriate regularization
techniques thereby yield sparse coefficient estimates.

Let y1, . . . , yn be the observations on the response, and let x1, . . . ,xn be the
p-dimensional observations on the predictor variables. We consider the linear re-
gression model

yi = x′iβ + εi, i = 1, . . . , n, (1)

with regression parameter β = (β1, . . . , βp)
′ and error terms εi ∼ N(0, σ). Tibshirani

(1996) proposed the least absolute shrinkage and selection operator (lasso), which
adds an L1 penalty on the coefficients to the least squares objective function. Thus
the lasso estimate of β with regularization parameter λ is defined as

β̂lasso = argmin
β

n∑
i=1

(yi − x′iβ)2 + nλ

p∑
j=1

|βj |. (2)

The L1 penalty has the desirable property that some coefficients are shrunken to
exactly zero, resulting in sparse model estimates. Other penalties share this prop-
erty, e.g., the smoothly clipped absolute deviation (SCAD) penalty by Fan and Li
(2001).

However, another common problem in applied statistics is the presence of out-
liers in the data. Since the lasso uses the least squares loss function, it is highly
influenced by such outliers. More robust alternatives have therefore been developed
in the literature. Most of those are penalized M-estimators (e.g., Rosset and Zhu,
2004; Wang et al., 2007; van de Geer, 2008; Li et al., 2011), which are robust against
outliers in the response variable but not against outliers in the predictor space. Ro-
bustness against the latter can be achieved by regularizing suitable robust regression
methods such as least trimmed squares (LTS; Rousseeuw and Van Driessen, 2006).
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By combining the LTS objective function with the L1 penalty, Alfons et al. (2013)
introduced the sparse least trimmed squares estimator, or sparse LTS for short. It
is given by

β̂sparseLTS = argmin
β

h∑
i=1

(
r2(β)

)
i:n

+ hλ

p∑
j=1

|βj |, (3)

where (r2(β))1:n ≤ . . . ≤ (r2(β))n:n are the order statistics of the squared residuals
and h ≤ n. Since the limit case h = n yields the lasso solution, sparse LTS can be
interpreted as a trimmed version of the lasso.

Sparse LTS has been shown to perform well with respect to model selection and
prediction when the data are contaminated. We perform further numerical experi-
ments to better understand the behavior of sparse LTS and other sparse regression
methods under increasing levels of contamination. Concerning theoretical robust-
ness properties, Alfons et al. (2013) assessed a family of L1 penalized regression
methods by computing their breakdown point (i.e., the maximum percentage of
outliers that an estimator can withstand). Another important measure of robust-
ness is the influence function (Hampel et al., 1986). It measures the influence that
an observation has on a statistical functional at a given model distribution. We
derive influence functions for a general class of regularized regression estimators.
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