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Abstract

In the binary classification framework, a closed form expression of the cross-validation
Leave-p-Out (LpO) risk estimator for the k Nearest Neighbor algorithm (kNN) is derived.
It is used to study the LpO risk minimization strategy for choosing k in the passive learning
setting. The impact of p on the choice of k and the LpO estimation of the risk are inferred.
Keywords: Classification, Cross-validation, kNN.

1 Introduction

We consider the binary classification framework, where the goal is to predict the unknown
label Y ∈ {0, 1} of an observation X. In the following, Z represents a random variable and
z its realization. To this purpose, one aims at building from data D = (X1, Y1), ..., (Xn, Yn)
a classifier f : X → {0, 1} whose classification error rate

L(f) = P (f(X) 6= Y |D)

is as low as possible, where P (· | D) denotes the probability with respect to (X,Y ) given
D. The risk of a classifier f is defined as R(f) = ED [P (f(X) 6= Y | D)]. The classification
algorithm we consider here is the k Nearest Neighbor algorithm (kNN, [5, 6]), that has been
successfully applied to many difficult classification tasks [7, 8]. The principle of the kNN
classifier is simple: first, for a given observation x to classify, find X(1), ...X(k) the k closest
points to x in the training set, then classify x according to a majority vote decision rule
among these k neighbors. The performance of the kNN algorithm highly depends on the
tuning of parameter k, that should be performed adaptively to the data at hand. To do
so, resampling strategies such as Bootstrap or Leave-p-out (LpO) cross-validation can be
used to estimate the prediction performance obtained with different values of k, and select
the optimal value k∗ that minimizes the prediction error rate. However, the computational
cost of such strategies is prohibitive. In practice one often needs to limit the number of
resamplings as the training sample size gets large, yielding poor approximation of the actual
risk.
Recently, closed form expressions have been obtained for the LpO estimator when applied
to the kNN algorithm [2]. This enables the practical use of LpO for kNN classifier at almost
the same algorithmic cost as standard empirical risk minimization. The behavior of the
minimizer kp of the LpO estimator is investigated with respect to the sample size n and
parameter p. In particular, it is shown that the choice of p is crucial for choosing k, unlike
what happens for estimating the risk of a given kNN classifier.
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2 Results

2.1 Closed form expression for LpO applied to kNN

Let (x1, y1), ..., (xn, yn) denote the complete set of data. Each step of the LpO procedure
splits this set into a training sample e of size n− p and a validation sample ē of size p. Let
fe denote the kNN classifier built from e and E the set of all possible training samples. Set
RLpO(k) the estimation of the kNN performance based on LpO:

RLpO(k) = (np )−1
∑
e∈E

(
1

p

∑
i/∈e

I{fe(xi)6=yi}

)
. (1)

For a given point i in the validation set ē, let V i
k denote the rank of its associated kth

neighbor in training set e. Let (E, Ē) represent a random splitting of the complete set of
data into 2 subsamples of size n− p and p, respectively. Then,

RLpO(k) = (np )−1
∑
e∈E

1

p

∑
i∈ē

I{fe(xi) 6=yi}

=
1

p

n∑
i=1

(np )−1
∑
e∈E

I{fe(xi)6=yi}I{i∈ē}

=
1

p

n∑
i=1

∑
e∈E

I{fe(xi) 6=yi}
⋂
{i∈ē}P (E = e)

=
1

p

n∑
i=1

P
(
{fE(xi) 6= yi}

⋂
{i ∈ Ē}

)
=

1

p

n∑
i=1

P
(
fE(xi) 6= yi|i ∈ Ē

)
P
(
i ∈ Ē

)
=

1

p

n∑
i=1

n∑
j=1

P
(
fE(xi) 6= yi|i ∈ Ē, V i

k = j
)
P
(
V i
k = j|i ∈ Ē

)
P
(
i ∈ Ē

)
=

1

p

n∑
i=1

P
(
i ∈ Ē

) k+p−1∑
j=k

P
(
V i
k = j|i ∈ Ē

)
P
(
fE(xi) 6= yi|i ∈ Ē, V i

k = j
)

.

Since E is uniformly distributed over E , it comes

∀i ∈ [1, n], P
(
i ∈ Ē

)
=

p

n
.

Similarly, one has

∀i ∈ [1, n], P
(
V i
k = j|i ∈ Ē

)
=

(j−1
j−k)(n−j−1

p−1−j+k)

(n−1
p−1 )

=
k

j
P (U = j − k) ,

where U ↪→ H(j, n − j − 1, p − 1) and H(a, b, c) denotes the hypergeometric distribution
with a the number of white balls, k the number of black balls and c the number of balls
to draw. Note that that none of these last two probabilities depend on i. To evaluate
the last probability of the expression, let us consider the ordered sequence Xi

(1), ..., X
i
(n−1),

where Xi
(k) is the kth neighbor of i in the complete sample. Since p observations (including

i) are removed at a given step of the LpO procedure, the first k neighbors of i belong to
{Xi

(1), ..., X
i
(k+p−1)}. Once this list is obtained (by applying the (k + p− 1)NN classifier to

the complete data), one only needs to compute the number of times (over all splittings) the
majority label is that of observation i, for each value of j. Since the computational cost to
compute the last probability only involves the k + p− 1 neighbors of i, it does not depend
on n. As a consequence, the computation of RLpO is linear in n. Let us now specify how to
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compute this probability.

Let ni
j be the number of 1s among the j neighbors of i in the complete sample. The

quantity ni
j can be obtained for all i and j ∈ [1, k + p − 1] by running the (k + p − 1)NN

classifier. We have:

P
(
fE(xi) 6= yi|i ∈ Ē, V i

k = j
)

= I{yi=0}P
(
fE(xi) = 1|i ∈ Ē, V i

k = j
)

+ I{yi=1}P
(
fE(xi) = 0|i ∈ Ē, V i

k = j
)

.

Let NE
i be the number of 1s among the k nearest neighbors of i in sub-sample E, and N j

i

the number of 1s among the j nearest neighbors of i in the complete training set. Assuming
k is odd for sake of simplicity, one obtains:

P
(
fE(xi) = 1|i ∈ Ē, V i

k = j
)

= P
(
NE

i ≥ k/2|i ∈ Ē, V i
k = j

)
= I{yj=0}

(
1− FH

(
k + 1

2

))
+ I{yj=1}

(
1− FH′

(
k − 1

2

))
,

(2)

where H ↪→ H(N j
i , j − N j

i − 1, k − 1), H ′ ↪→ H(N j
i − 1, j − N j

i , k − 1), and FH stands
for the cumulative distribution function of variable H. Similar formulas can be derived for
P
(
fE(xi) = 0|i ∈ Ē, V i

k = j
)
.

2.2 Application to passive Learning

Using kNN classifiers in passive learning requires to choose k. This can be done using LpO.
For every 1 ≤ p ≤ n,

kp = arg min
1≤k≤n

RLpO(k) .

In the specific case p = 1, some theoretical results exist on the asymptotic behavior of k1

with respect to n [4]. Having access to exact LpO enables to further infer the relationship
between p and kp, at least to a practical point of view. In the following, we investigate this
relationship using 2-dimension simulated data. X = (X1, X2) is generated using a mixture
of 3 Gaussian distributions, with proportions (0.2, 0.2, 0.6), means (0.25, 0.25), (0.5, 0.75),
(0.75, 0.75), and common covariance matrix I2. The label Y is generated conditionally to X:
if (X1 < 0.2 and X2 < 0.2) or (X1 > 0.8 and X2 > 0.8) then P (Y = 1|X) = q, otherwise
P (Y = 1|X) = 1 − q. Several noise levels are considered: q = 0, 0.1, 0.2, 0.3, and 0.4. 100
repetitions of each condition have been performed.

Influence of n on kp (p fixed) Calculations of Section 2.1 on the LpO estimator allow
to study kp with respect to n for various values of p. Figure 1 (left) displays kp with respect
to n for a level of noise q = 0.2, and gives a representative picture of the results. It shows
that kp is sub-linear with respect to n as long as p is kept independent of n. Since it is
known that kNN estimators are consistent as long as k = o(n) [4], it leads us to conjecture
that the kNN classifier computed from kp neighbors (with p fixed) is consistent.

Influence of p on kp (n fixed) When several estimators are available, choosing the
best one is a classical issue in statistics. Model selection is a typical strategy aiming at
addressing this question. Choosing the number k of neighbors involved in the definition of
the kNN estimator enters into this setting. First, considering Figure 1 (right) and Table 1,
one observes that increasing p entails a smaller choice of kp, which can be desirable as shown
in the following. This phenomenon is observed with several noise levels from q = 0.1 up to
q = 0.4 (not shown). Second, it is necessary to choose p larger than 1 as soon as the noise is
not null. Indeed, LpO with small values of p leads to choose too large values of k when the
noise is not null. This observation is supported by Figure 1 (right) and Table 1, where the
minimum locations of red curves (small values of p) are larger than that of the black curves
(which displays the true risk computed on a large validation set). This is also observed with
a noise level 0.1 ≤ q ≤ 0.4. A growing noise reduces the influence of the bias in the fitting of
the kNN classifier, leading to a larger optimal k (compare black curves of Figure 1 between
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Figure 1: Left: Evolution of k (in ordinates) with respect to sample size n, q = 0.2. Black
points correspond to kp, red points correspond to the optimal choice of k (based on a large test
sample). Center: Plot of the average classification error rate (in ordinates) evaluated by LpO
with different p (colored curves) or on test samples (black curves), for different values of k (in
abscisses) and for noise level q = 0. Red curves correspond to values of p lower than 20, green
curves to values of p between 20 and 80, and blue curves to values higher than 80. Right:
Same representation as previous, for noise level q = 0.2.

center and right panels). LpO with small values of p exhibits a higher sensitivity to this
phenomenon than with larger values of p (Figure 1 right panel). Therefore, this trend can
be balanced by using larger values of p (since higher p yield lower kp). Indeed, we observe
on Figure 1 that for some values of p larger than 1 (blue curves), the minimum location is
close (or equal) to the best possible k. This suggests that (i) using L1O can be misleading,
(ii) a convenient choice of p > 1 is required to provide a reliable kp.

1 < p < 10 11 < p < 30 40 < p < 80 p > 80 Test

k 21 19 17-15 13-9 17

Table 1: Choice of parameter k by LpO for different values of p, or by test sample, when q = 0.3.

Risk estimation In many applications, one is also interested in a sharp estimation of the
performance of a given classifier. Due to the computational cost of LpO, this performance is
often estimated with p = 1. One can wonder whether higher values of p should yield better
results. First, Figure 1 shows that large values of p (blue curves) lead to biased estimations
of the true risk (black curve). In other frameworks ([1, 3]), CV is known to be all the more
biased as p is large. Second, these theoretical considerations entail that the least biased
LpO estimator is obtained with p = 1. Figure 1 supports this conclusion since, for a fixed k,
small values of p remain close to the black curve. Note that, depending on the noise level,
larger values of p can also lead to reliable estimates of the true performance (not shown
here). Third, an important conclusion arising from the case q = 0 (center of Figure 1) is
that model selection and risk estimation can be contradictory objectives. All values of p lead
to choose k = 1 from a model selection point of view. However, only p = 1 yields a (nearly)
unbiased estimation of the risk.

3 Conclusions

In applications of kNN to real data, LpO is used either to assess the performance of a
kNN classifier (risk estimation), or to choose k (model selection). In both cases, p is fixed
at 1 in most cases for computational reasons. In the model selection setting, there is no
guideline for practitioners about the relationship between p and kp, or about the relevance
of the selected value k1. From a theoretical point of view, relating the optimal p to the
signal-to-noise ratio and the size of the training set is of great interest. The closed-form
expressions derived for the LpO estimator associated with kNN classifiers yield an efficient
and practical tool to study the behavior of kp, both for theoretical and practical purposes.
Exact LpO should be preferred to its classical surrogate KCV, since LpO is less variable
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(with K = n/p). The present simulation study is a preliminary work before the theoretical
analysis of LpO in the passive learning setting. Some further work is required to get more
insight toward a data-driven calibration of p.
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