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Abstract. Factor models appear in many areas, such as economics or signal processing.
If the factors and errors are Gaussian, a likelihood-based theory is well-known since Lawley
(1940). However, these results are obtained in the classical scheme where the data dimension
p is kept fixed while the sample size n tends to infinity. This point of view is not valid
anymore for large-dimensional data, and usual statistics have to be modified. In this talk, we
consider the strict factor model with homoscedastic variance. First, we give the bias of the
maximum likelihood estimator of the noise variance by giving a CLT. We then give a bias-
corrected estimator. Secondly, we present a corrected likelihood ratio test of the hypothesis
that the factor model fits. Throughout the talk, simulation experiments are conducted to
access the quality of our results.
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1 Introduction

In a factor model, variables are described as linear combinations of factors with added
noise. This model, which first appears in psychology, is now widely used and appears in
many scientific fields: in finance, the Arbitrage Pricing Theory (APT) of [15] heavily rely
on factor analysis model. Similar models can be found in physics of mixture, see [9, 12],
population genetics or wireless communications [6, 7, 16]. More recently, spiked population
models have been introduced in [8] that encompass factor models.

A statistical theory for the maximum likelihood estimation is well-known since [11]. [2]
also gives a likelihood ratio test for model fit which has an asymptotic χ2 distribution under
the null. However, these results are developed from a classical point of view where the data
dimension p is kept fixed while the sample size n tends to infinity. This scheme is not valid
anymore for large-dimensional data.

In the strict factor model case, [9] observed that the maximum likelihood estimator of
the homoscedastic variance has a negative bias, and proposed an empirical correction. In
Section 3, we give the bias and propose an unbiased estimator. Section 4 considers the
goodness-of-fit test for the strict factor model: we propose a corrected likelihood ratio test
to cope with the high-dimensional effects.
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In the remaining Section 2, we introduce the definition of the strict factor model and
the related maximum likelihood theory. Throughout the paper, simulation experiments are
conducted to access the quality of the proposed estimation.

2 Problem formulation

2.1 The model

Let p denote the number of variables and n the sample size. In a general factor analysis
model, the p-dimensional observation vectors (xi)1≤i≤n are of the form

xi =
m

∑
k=1

fkiΛk + ei +µ (1)

= Λfi + ei +µ , (2)

where

• µ ∈ Rp represents the general mean;

• fi = (f1i, . . . , fmi)
′ are m random factors (m < p);

• Λ = (Λ1, . . .Λm) is the p×m full rank matrix of factor loadings;

• ei is a p-dimensional centered vector of noise, independent from fi and with covariance
matrix Ψ = E(eie

′
i).

In order to remove indeterminacy and avoid identification problem in the model, commonly
used restrictions are

• E(fi) = 0 and E(fif ′i) = Ip;

• Ψ = cov(ei) is diagonal;

• Γ = Λ′Ψ−1Λ is diagonal.

Consequently, the population covariance matrix Σ = cov(xi) is Σ = ΛΛ′+Ψ. In a strict
factor model with homoscedastic variance, we assume in addition that Ψ = σ2Ip, where
σ2 ∈ R is the common variance of the noise ei. In this case, Σ = ΛΛ′+σ2Ip and has the
spectral decomposition

W′ΣW = σ
2Ip +diag(α1, . . . ,αm,0, . . . ,0)

where W is an unknown basis of Rp and α1 ≥ α2 ≥ ·· · ≥ αm > 0. Let x̄ be the sample mean.
The sample covariance matrix of the n p-dimensional i.i.d. vectors (xi)1≤i≤n is

Sn =
1
n

n

∑
i=1

(xi− x̄)(xi− x̄)′.

We denote by λn,1 ≥ λn,2 ≥ ·· · ≥ λn,p its eigenvalues.

2.2 Maximum likelihood estimators

If the fi and ei are Gaussian, a likelihood-based theory has been developed by [11]. The
maximum likelihood estimator of µ is x̄ and those of Λ and σ2 are given by (see [3]):

σ̂
2 =

1
p−m

p

∑
i=m+1

λi and Λ̂k =
(
λn,k− σ̂

2) 1
2 vn,k, 1≤ k ≤ m,
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where vn,k is the normalized eigenvector of Sn corresponding to λn,k, for 1≤ k ≤ p.
In the classical setting where p is kept fixed and small whereas the sample size n→ ∞,

the almost sure convergence of these estimators is well-established. Nevertheless, this is no
longer the case when p is large compared to n.

2.3 CLT for LSS of a high-dimensional covariance matrix

We recall a proposition which will be useful in the sequel. Let Fn =
1
p ∑

p
i=1 δλn,i be the

empirical spectral distribution (ESD) of Sn and Fc,H be the generalized Marčenko-Pastur
distribution with indexes (c,H). We consider the following empirical process

Gn( f ) = p
∫
R

f (x)[Fn−Fcn,Hn ](dx), f ∈A ,

where A is the set of analytic functions f : U → C, with U an open set of C such that
[1(0,1)(c)a(c),b(c)] ⊂ U . As Hn = FΣ → δσ2 and following [4], we have the following
proposition which is a specialization of Theorem 9.10 of [5] (which covers more general
matrices).

Proposition 1. Assume that f1, . . . , fk ∈ A and the entries xi j of the vectors (xi)1≤i≤n are
i.i.d. real random variables with mean 0, E(|xi j|4) = 3σ4 and cov(xi) = Σ = ΛΛ′+σ2Ip.
Then the random vector (Gn( f1), . . . ,Gn( fk)) converges to a k-dimensional Gaussian vector
with given mean vector m( f j), j = 1, . . . ,k and covariance function v( f j, fl), j, l = 1, . . . ,k.

3 Estimation of the homoscedastic variance

3.1 Central limit theorem for the estimator of the variance

As observed in [9, 10], in high-dimensional setting, the m.l.e. σ̂2 in (2.2) has a negative
bias. The following theorem give this bias and show its asymptotic normality:

Theorem 1. We assume the same conditions of Proposition 1. Then, we have

(p−m)

σ2
√

2c
(σ̂2−σ

2)+b(σ2)
L−→N (0,1),

where b(σ2) =
√ c

2

(
m+σ2

∑
m
i=1

1
αi

)
.

3.2 A bias-corrected estimator

The previous theory recommends to correct the negative bias of σ̂2. However, the bias
b(σ2) depends on the number m and the values αi of the spikes. These parameters could
not be known in real-data applications and they need to be first estimated. In the literature,
consistent estimators of m have been proposed, e.g. in [13, 14] and [9]. For the values of the
spikes αi, it can be done by inverting their almost sure limit at the corresponding eigenvalues
λ j.

As the bias depends on σ2 which we want to estimate, a natural correction is to use the
plug-in estimator

σ̂
2
∗ = σ̂

2 +
b(σ̂2)

p−m
σ̂

2
√

2c.

Using Theorem 1 and the delta-method, we obtain the following CLT
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Theorem 2. We assume the same conditions of Proposition 1. Then, we have

ṽ(c)−
1
2 (σ̂2
∗ −σ

2 + b̃(σ2))
L−→N (0,1),

where

• b̃(σ2) = c
√

2cσ2

(p−m)2

(
mb(σ2)+2σ2b(σ2)∑

m
i=1 α

−1
i

)
− 2c2σ4b(σ2)2

∑
m
i=1 α

−1
i

(p−m)3 = O
(

1
p2

)
;

• ṽ(c) = 2cσ4

(p−m)2

(
1+ cm

p−m + 4c2σ4

(pm)3 ∑
m
i=1 α

−1
i

)2
= v(c)

(
1+O

(
1
p

))
.

σ2
∗ is still a biased estimator, but with a bias of order O

(
1
p2

)
instead of O

(
1
p

)
for σ̂2.

3.3 Simulation experiments

We conduct some simulation experiments in three different settings and compare with
two existing estimators of the common variance. Our estimator performs well.

4 Corrected likelihood ratio test of the hypothesis that the factor
model fits

In this section we consider the following goodness-of-fit test for the strict factor model.
The null hypothesis is then

H0 : Σ = ΛΛ
′+σ

2Ip,

where the number of factors m is specified.
Following [3], the likelihood ratio test (LRT) statistic is

Tn =−nL∗, where L∗ =
p

∑
j=m+1

log
λn, j

σ̂2 ,

and σ̂2 is the variance estimator (2.2). Keeping p fixed while letting n→∞, then the classical
theory states that Tn converges to χ2

q , where q = p(p+1)/2+m(m−1)/2− pm−1, see [3].
However, this classical approximation is no more valid in the large-dimensional setting.
Indeed, we will prove that this criterion leads to a high rate of false-alarm. In particular, the
test becomes biased since the size will be much higher than the nominal level (see Table 1).

In a way similar to Section 3, we will construct a corrected version of Tn using Proposi-
tion 1 and calculus done in [4] and [17]. As we consider the logarithm of the eigenvalues of
the sample covariance matrix, we will assume in the sequel that c < 1 to avoid null eigen-
values. We have the following theorem

Theorem 3. We assume the same conditions of Proposition 1, with c < 1, i.e. the entries xi j

of the vectors (xi)1≤i≤n are i.i.d. real random variables with mean 0, E(|xi j|4) = 3σ4 and
cov(xi) = Σ = ΛΛ′+σ2Ip. Then, we have

v(c)−
1
2 (L∗−m(c)− ph(cn)−η +(p−m) log(β )) L−→N (0,1),

where m(c) = log(1−c)
2 , h(cn) =

cn−1
cn

log(1− cn)− 1, η = ∑
m
i=1 log(1+ cσ2α

−1
i ), β = 1−

c
p−m(m+σ2

∑
m
i=1 α

−1
i ) and v(c) =−2log(1− c)+ 2c

β

(
1
β
−2
)

.
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To test H0, we then can use the statistic

v(cn)
− 1

2 (L∗−m(c)− ph(cn)−η +(p−m) log(β )),

This test is asymptotically normal and will be hereafter referred as the corrected likelihood
ratio test (CLRT in short).

4.1 Simulation experiments

We consider the following models:

• Model 1: spec(Σ) = (25,16,9,0, . . . ,0)+σ2(1, . . . ,1), σ2 = 4, c = 0.9;

• Model 2: spec(Σ) = (4,3,0, . . . ,0)+σ2(1, . . . ,1), σ2 = 2, c = 0.2;

• Model 4: spec(Σ) = (8,7,0, . . . ,0)+σ2(1, . . . ,1), σ2 = 1, varying c.

Table 1 gives the realized sizes (i.e. the empirical probability of rejecting the null hy-
pothesis) of the classical likelihood ratio test (LRT) and the corrected likelihood ratio test
(CLRT) proposed above. The computations are done under 10000 independent replications
and the nominal test level is 0.05.

Table 1: Comparison of the realized size of the classical likelihood ratio test (LRT) and the corrected likelihood

ratio test (CLRT) in various settings.
Settings Realized size of CLRT Realized size of LRT

Model 1
p = 90 n = 100 0.0497 0.9995
p = 180 n = 200 0.0491 1
p = 720 n = 800 0.0496 1

Model 2
p = 20 n = 100 0.0324 0.0294
p = 80 n = 400 0.0507 0.0390
p = 200 n = 1000 0.0541 0.0552

Model 4

p = 5 n = 500 0.0108 0.0483
p = 10 n = 500 0.0190 0.0465
p = 50 n = 500 0.0424 0.0445
p = 100 n = 500 0.0459 0.0461
p = 200 n = 500 0.0491 0.2212
p = 250 n = 500 0.0492 0.7395
p = 300 n = 500 0.0509 0.9994

The sizes of our new CLRT are close to the theoretical one, except when the ratio c= p/n
is small (less than 0.1). On the contrary, the sizes produced by the classical LRT are much
higher than the nominal level when c is going close to one, and the test will always be
rejected when p is large.
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